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Abstract

We present an efficient framework for generating marbled textures that can be exported into a vector graphics format

based on an explicit surface tracking method (see Figure 1). The proposed method enables artists to create complex

and realistic marbling textures that can be used for design purposes. Our algorithm is unique in that the marbling paint

on the surface of water is represented as an enclosed contour and is advected by fluid flow to deform the marbling

silhouette. In contrast to previous methods, in which the shape is tracked with a concentration density field in Eulerian

grids, our approach facilitates greater complexity that is free from grid resolution and per-pixel computation while

retaining real-time performance. To forestall the propagation of large vertices, we adaptively resample the contours,

exploiting the curvature and the turbulence of the fluid as criteria. At the convection phase, we parallelly advect

contour particles on a Graphics Processing Unit (GPU) in addition to applying volume corrections. Finally, we quickly

remove extremely thin lines in shapes to remove dozens of vertices. We performed our method with an interactive

prototype to demonstrate the robustness of the proposed method in several scenarios.
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1. Introduction

Marbling is a traditional technique that is used for

decorating papers with paints floating on a liquid. Mar-

bled patterns are created by dropping paints onto the

surface of water and stirring the surface with brushes.

The colors are then transferred to a sheet of paper by

laying the paper on the surface of the water. Today, due

to its ease of use and the vivid and unique patterns it

produces, the marbling designs are printed worldwide

onto various media, such as booklets and tissue boxes.

[13, 18].

One of the most challenging aspects of simulating

marbling is to retain the clarity on the surfaces between

the different paints and the liquid to depict the features

of flow streams precisely. Such clear surfaces are main-

tained with ox gall and water in real marbling. Several

researchers have attempted to simulate this marbling ef-

fect with grid-based advection schemes. However, the

Eulerian approach comes with built-in “numerical dif-

fusion,” which is notorious for blurring clear outlines.

A higher-order accurate advection scheme can be used

to prevent the dissipation, but it is computationally ex-

pensive and suffers from instabilities known as Gibb’s

oscillations. Among the computer graphics community,

a great variety of fluid phenomena, such as smokes and

Figure 1: Marbleized candy clip: This candy was deformed interac-

tively using our marbling simulator, and it can be described in terms

of vector graphics.
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liquids, have been explored [4]. However, these tech-

niques are not directly applicable to marbling flow be-

cause they are carefully engineered to focus on produc-

ing specific types of visual properties.

Our method is related to an explicit surface tracking

method, also known as front tracking, which is a tech-

nique for tracking propagating interfaces. Front track-

ing works with Lagrangian surface particles connected

to triangles or piecewise linear curves, and it utilizes the

underlying motion to capture deforming surfaces. Front

tracking often outperforms other Lagrangian methods

because the particles are placed only on the surface

rather than filling the volume. However, the algorithm

tends to be complicated because surfaces can be tangled.

In the proposed method, we track the deformation of

the marbling shape with explicit surface particles based

on the principle that the contour of the paint region

rarely collides by advection due to the divergence free

property of free surface fluid flow, as shown by Ando

& Tsuruno [3]. Note that the ignorance of topology is

only true for free surface flow in continuum level. In

contrast to liquid animation, where the liquid domain

merges or splits vividly over time, the liquid domain of

free surface flow is usually fixed. This strategy makes

the algorithm simpler and intuitive because the topolog-

ical changes can basically be ignored. However, if no

topological changes are taken into account, the number

of vertices grows limitlessly as the contour stretches,

which significantly slows the simulation. To permit the

simulation of proportionately larger surfaces, we run a

fundamental algorithm on the GPU in a parallel man-

ner, and we resample the contour adaptively, watching

for the local vorticity and curvature of the surfaces to ap-

proximate the shape with fewer vertices without losing

much visual detail. Even though the contour is essen-

tially collision free, because the surface is discretized

over space and time, collisions can be produced due to

numerical error. We found that this error does not pro-

duce significant visual artifacts, but as an option we also

remove thin line regions that are almost invisible to re-

move a large number of vertices and collisions. Con-

sequently, our algorithm runs reasonably fast in terms

of shape complexity. Our marbling simulation runs on

an underlying velocity field of fluid, which is generated

in real-time in response to the user’s interactions. The

characteristics of marbling deformation are controlled

by the behavior of the velocity field. However, because

the resolution of fluid flow is rather coarse, the tracker

produces slight volume loss at each time step, which

accumulates over time. To maintain concentration con-

stant volume of the fluid, we slightly move surfaces in

normal directions to effectively correct the error.

1.1. Simulation Overview

For each time step, our marbling simulator takes the

following five steps in order.

1. Convection: We start the simulation by generating

the underlying fluid velocity with a uniform grid

and semi-Lagrangian method. We advect the con-

tour points explicitly by fetching velocities from

sixteen grid points using cubic spline interpolation

with the fourth-order Runge-Kutta method. We

also subdivide the stretched contour by rewinding

time to find a more accurate subdivision point than

that obtained with linear subdivision.

2. Adaptive Sampling: We resample the contour

points according to the local curvature, vorticity

and distance from the opposite contour to depict

the shape with fewer vertices.

3. Volume Error Correction: If we advect the mar-

bling shape under the fluid motion with a coarse

grid, the volume error accumulates slowly over

time. We quickly correct this error by inflating

or shrinking the entire shape toward normal direc-

tions with slight changes.

4. Shape Simplification: We dynamically remove

extremely thin lines that are nearly invisible so the

simulator will run more smoothly. To do this, we

detect and cut such regions, and then reconstruct

the contour connections. The simplification test

can be triggered at any time, particularly when the

user desires, because the collision can basically be

ignored.

5. Rendering and Export: The deformed marbled

shape is rendered through the graphics hardware

or exported in an editable vector graphics format.

2. Previous work

Our work is related to two categories of studies: the

artistic expression of fluids and surface tracking meth-

ods.

The most relevant field is the direct simulation of

marbling. Acar & Boulanger [2] attempted to reproduce

visual marbling effects using a physically derived flow

model. They observed surface flow based on mesoscale

dynamics, and they produced fluctuation effects at dif-

ferent scales. To advect clear silhouettes under Eu-

lerian grids, they employed B-spline interpolation and

extended the range of concentration temporarily in the

semi-Lagrangian advection phase. However, Eulerian

grid approximation is limited in terms of the degree of

resolution if we wish to obtain a reasonable simulation.
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If we simulate with high resolution, a great deal of per-

pixel computation and memory is required. Zhao et al.

[33] developed a real-time marbling simulator that fully

runs on the GPU. They employed a third-order accurate,

but fast, unsplit semi-Lagrangian constrained interpo-

lation profile method to reduce the numerical dissipa-

tion while retaining stability. Although they achieved

24 frames per second (FPS) at 1680×1050 grid resolu-

tion, the method was still inadequate for printing large

materials because the resolution was approximately 5×3

square inches at 350 dpi. Acar [1] also proposed a level

set-based system that provides a flexible environment

for the user to generate traditional marbling patterns in

high resolution. However, real-time feedback is still

computationally expensive with this method.

Eden et al. [6] proposed a method for rendering liq-

uids in a cartoon-style manner. By exploiting a phys-

ically created fluid surface, they rendered the effect by

emphasizing the properties of the liquid’s shape and mo-

tion, which were inspired by the abstraction and simpli-

fication of cartoon animations. This method resembles

our own in that both have clear silhouettes and few col-

ors. However, they used an implicit contouring method

as the underlying liquid animation. Hence, the thin line

detail is inherently smoothed out before it is stylized.

Selle et al. [28] introduced a technique for gener-

ating cartoon-style animations of smoke. Based on a

physically-based simulated output, they traced marker

particles and rendered them using depth buffer differ-

ences to generate clear smoke animations. McGuire &

Fein [19] extended this technique and developed a sys-

tem for rendering real-time animations of smoke in ad-

dition to introducing a novel self-shadowing algorithm.

However, these methods cannot track precise thin lines

with the level of detail seen in marbling-like fluid flow

because each particle (primitive) is visibly large.

Witting [30] presented a system that uses computa-

tional fluid dynamics to produce two-dimensional an-

imated films. Compressive fluid dynamics were em-

ployed and were restricted to two dimensions to develop

user-controlled fluid experiences. The work presented

in this paper shares his motivation in that it offers artists

fluid environments for design purposes, we focus par-

ticularly on a vector graphics format.

Pedersen & Singh [26] developed the automatic syn-

thesis of labyrinthine and maze structures with curves

on 2D manifolds which are updated by adding Brown-

ian motion, fairing, and attraction-repulsion forces. Al-

though this type of simulation is quite different from

ours, the nature of the strategy is similar to ours in that

a simple closed path is evolved with adaptively resam-

pled curve points and underlying forces. In our model,

curves are rendered as solid polygons, which depict

clear marbling silhouettes.

Our work is also comparable to surface tracking tech-

niques used in physically derived liquid animations.

This topic has a long historical background in the lit-

erature. We briefly review these works because they

mainly focus on a well-designed topological change al-

gorithm, which is orthogonal to our approach. Roughly,

a free surface is tracked using three approaches: Eule-

rian grids, Lagrangian particles and explicit surfaces.

Among the Eulerian approaches, Hirt & Nichols [16]

proposed a volume-of-fluid method that constructs an

approximation of the interface from cells that contain

portions of the interface. Osher & Sethian [25] proposed

a level set method, which has become dominant in in-

dustrial applications. In the level set method, a signed

distance function φ from the interface is advected, and

the surface is implicitly located where φ = 0. The

advantage of these two Eulerian based approaches is

that they do not require a special post-process to han-

dle topological changes. However, they do suffer from

numerical diffusion or loss of mass conservation [8].

Among the Lagrangian methods, Enright et al. [7] ex-

tended the level set method with Lagrangian particles

and increased accuracy. Harlow & Welch [15] advected

particles in marker-and-cell grids to identify deforming

surfaces. Müller et al. [24] and Harada et al. [14] incor-

porated Smoothed Particle Hydrodynamics (SPH) and

applied it to visual simulations. These methods intro-

duced blobby or splitting artifacts to thin details.

Meanwhile, a number of explicit front tracking meth-

ods have been proposed, both for computational dynam-

ics [5, 11, 22, 29, 31] and for image processing [17, 20].

In front tracking methods, a surface interface is con-

structed with explicit surface elements and is advected

by the underlying motion. The front tracking method

offers a precise representation of the interface free from

grid resolution or numerical diffusion; however, it suf-

fers from self-intersections and complexity. For exam-

ple, they detected topological changes by uniform grid

traps or by searching close edges, a process that can be

challenging to execute without losing surface detail. Ex-

cept for the fact that they tackle complex topological

changes, their method is comparable to ours. If desired,

our method can also be applied to topological changes

for extremely thin lines. In our case, however, we only

split thin lines so that little detail will be removed.

3. Method

Before we discuss the concrete algorithm, let us first

briefly outline the basic workflow, which is shown in
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Figure 2: Workflow of our method: We first place closed contours of

a painted region in the fluid field, then we advect or stretch them along

the fluid flow. The rendering of the region is performed the same way

a concave polygon is rendered.

Figure 2. To depict vector graphics, we first place closed

contours in a fluid flow and then advect them along the

fluid flow.

3.1. Contour Advection

To advect contours, we must generate the underlying

fluid motion. For simplicity, we use the finite differen-

tial grid and semi-Lagrangian advection method to gen-

erate the fluid velocity field. Once we have the fluid

flow, we can place closed contours on the surface of the

water and advect them. In our system, we represent con-

tours as a sequence of discrete points that are connected,

and we advect them in the Lagrangian manner. In a nu-

merical method, it is inevitable that advection will cause

collisions. To prevent significant collisions, we employ

a fourth-order accuracy Runge-Kutta scheme. We de-

note this scheme as

p
t+∆t = φ(∆t, pt,ut), (1)

where pt, ut and φ denote the position of the contour

vertex, the velocity of the fluid field and the Runge-

Kutta scheme at time t, respectively. The velocity of

the fluid at vertex point p is obtained by interpolating

the sixteen surrounding grids using cubic interpolation.

Note that the velocity beyond the grid wall is set to zero.

This type of interpolation is more accurate than bilin-

ear interpolation. However, our interpolation sometimes

overshoots due to the inherent oscillation. We improve

this instability by clamping the value to one of the ve-

locities of the four surrounding grids.

After all of the vertices have been advected (t ← t +

∆t), we measure the distances between the connected

vertices. If the distance exceeds a threshold d, we insert

a new vertex pnew midway between the relevant pair of

vertices at the previous time step, and we advect it such

that

pnew = φ

(

∆t,
1

2
(p

t−∆t
0 + p

t−∆t
1 ),ut−∆t

)

, (2)

where p0 and p1 denote the positions of each vertex in

the pair. This time-rewinding method helps position the

subdivided vertices more accurately than would linear

Linear Subdivision Our Subdivision

Figure 3: Comparison with linear subdivision and time-rewinding

subdivision: The red oval represents the subdivided points, and the

blue oval represents the original advected points. Unless the contour

is subdivided only once per segment, our time-rewinding subdivision

mimics the round feature of the marbled contour more effectively than

linear subdivision.

Figure 4: Procedure for setting anchor points: The bezier descrip-

tion helps blur faceted edges. The two anchor points are set at the

front and back direction of the tangent vector of the point.

subdivision with rapid advection, as seen in Figure 3.

The effect may be slight. However, it also helps to re-

duce faceted edges or collisions, which allows us take

larger time steps, but, if the distance is less than d/2,

we collapse the vertex. This process is repeated until all

connected vertices are separated by distances between d

and d/2

3.2. Rendering and Export

To export a region as a vector graphic, we write the

shape as a regular concave polygon. Starting from an

arbitrary vertex, we move to the next connected vertex

and write its position in sequence. In our prototype, we

use the scalable vector graphics format with a path en-

try to export the vector graphics file into an actual file.

The rendering of the concave polygon is performed effi-

ciently by the stencil method [32]; for every pair of con-

nected contour points (p, q), we draw a triangle polygon

(0, p, q) onto a framebuffer while inverting the existing

values between 0 and 1. Finally, the solid region is filled

with value 1. Rendering solid regions using the GPU is

described in a later section. The contours can be roughly

described with a Bézier curve by giving each point a
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pair of anchor points to avoid faceted curves. For each

point p, a pair of anchor points q0, q1 are computed as

pi ± v/8, where pi denotes the position of the i th vertex

on a contour, and v = pi+1 − pi−1. Figure 4 illustrates

the graphical procedure. This interpolation is actually a

family of Catmull-Rom splines. Note that the B-spline

interpolation may seem natural, but it is not widely used

in the editable vector graphics format.

3.3. Adaptive Refinement

With the aforementioned steps, creating a marbling

silhouette with vector graphics may be possible. How-

ever, the implementation of this method can easily result

in excessive computation due to the rapidly increasing

propagation of vertices over time. In this section, we in-

troduce an “Adaptive Refinement” method to suppress

this propagation.

From our observations, we found that we could omit

vertices where the contour is not strongly curved, and,

in places where the contour is tightly curved or the fluid

is eddying, we needed to insert more points. Hence, we

tuned the distance threshold d, and we controlled it by

taking its product with the local curvature ccurvature
i

and

the turbulence cturbulence
i

so that

di = dmaxccurvature
i cturbulence

i + ε, (3)

where dmax denotes the maximum space between ver-

tices. The value ε is a limit constant to avoid 0. Typi-

cally, dmax would be around 5ε to 10ε and ε is approxi-

mately the size of a pixel. To determine the local curva-

ture, we employed a normalized second derivative:

ccurvature
i = exp(−|κ|), (4)

where κ denotes the finite differential curvature value.

For local turbulence, we considered the local vorticity

cturbulence
i = exp(−|∇ × u(pi)|), (5)

where u(pi) denotes the velocity of the fluid at position

pi. Using such an adaptive d, we can unnoticeably re-

move a large fraction of the vertices while increasing

the quality where contours have high curvature or tur-

bulence. Notice that both ccurvature
i

and cturbulence
i

range

between 0 and 1. This strategy works well for most

cases, although when d is sufficiently large, it often fails

to capture small perturbations of the fluid flow. To com-

pensate for this drawback, we also diffuse di along the

contour. After we calculated each di value at pi, we it-

eratively assigned to di a value as follows:

di ←

w
∑

n=−w

G(α, n)di+n, (6)

Figure 5: Adaptive Refinement: The small, red circle marks repre-

sent vertices to track. Note that the space of vertices is sensitive to

curvature. To avoid collisions, more vertices are inserted where the

contours are highly curved.

where w and G(α, x) denote the window radius and

a Gaussian function, respectively. Typically, w =

floor(kd−1
max) where k is a scaling parameter. By diffus-

ing di, a rapid agitation around the vertices triggers its

neighbors to have a small di value; as a result, the rapid

motion is well captured by the neighboring vertices. We

illustrate the effect of Adaptive Refinement in Figure 5.

The Adaptive Refinement technique prevents large

numbers of unnecessary vertices from being inserted.

However, it produces intersections around thin or adja-

cent regions. Even though such collisions should not

occur in the continuum level, because the numerical

model is discrete, such collisions are inevitable. For-

tunately, we found that slight contour collisions do not

contribute significantly to visual artifacts. However, for

the purpose of generating high DPI images such as large

posters, one may want to remove collisions as much

as possible. In such cases, we add a proximity term

c
proximity

i
in equation (3) as

c
proximity

i
= 1 − exp(−d

proximity

i
), (7)

where d
proximity

i
denotes the distance function from the

nearest opposite contour. This may magnify the contour

subdivisions, but it reduces collisions.

3.4. GPU Acceleration

Although our algorithm runs at an interactive rate on

a CPU, it is limited to only around 40,000 vertices (10

FPS). In this section, we introduce a GPU accelerated

algorithm to boost real-time performance. Similar to

particle markers, contours can be tracked with a collec-

tion of particles. In our model, however, the number of

particles varies, and explicit connection information is

dynamically reconstructed. A straightforward approach

may be to store each initial vertex in individual kernels

and watch them propagate, however, the computational
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cost varies among kernels because contour growth is un-

even, resulting in a slowdown. To disperse the compu-

tation evenly, we introduce a method for task diffusion.

Our GPU acceleration strategy consists of the follow-

ing three steps: (i) contour advection, (ii) contour sub-

division and (iii) task diffusion. In our system, each ver-

tex contains information about its position and a refer-

ence to the next connected vertex. We refer to this kind

of vertex as a “task.” On a GPU, a contour is decom-

posed into a collection of tasks, each one referring to

the next task. The tasks are then stored in separate ker-

nels (Figure 6 (a)(b)). The devices memory storage is

pre-allocated and mapped onto kernels.

In the advection phase, the positions of the tasks

stored in each kernel are advected in parallel, as in sec-

tion 3.1. In the contour subdivision phase, each kernel

probes every stored task for its distance from the refer-

enced task and then subdivides or collapses it if neces-

sary, as described in section 3.1,3.3. Inserted vertices

are stored in the kernel of the originating task. The de-

tailed workflow of this advection is illustrated in Algo-

rithm 1.

In this phase, the number of tasks stored in the ker-

nels become uneven. In the task diffusion phase, we

choose random pairs of kernels, and we compare their

numbers of stored tasks. Where the opposite kernel

holds a smaller number of tasks, we move the tasks into

the opposite kernel. For consistency, we choose a pair

(kerneli, kernel(i+r)mod n), where kerneli denotes the i th

kernel, r is a shared random integer and n is the number

of kernels. We avoid conflict by letting i be even and r

be odd. This task diffusion phase averages out the num-

ber of tasks among the kernels, which disperses the ad-

vection and subdivision costs evenly. The detailed pro-

cedure for the task diffusion is illustrated in Algorithm

2.

To evaluate equation (7), vertex indices are sorted

into uniform grids as described in [12], and we constrain

the searches within the neighboring grids. Solid regions

are rendered using the stencil method by randomly writ-

ing task polygons (0, p, preference) into a vertex array,

where p denotes the position of a task and preference de-

notes the position of the referenced task. Empty slots

are filled with null polygons (Figure 6 (c)). In our case,

the procedures, including a description of the underly-

ing fluid, was ported using Compute Unified Device Ar-

chitecture (CUDA).

3.5. Volume Correction

In recent years, preserving volume has been a com-

mon problem for deformable objects in the field of com-

puter graphics, including character animation and phys-

Algorithm 1 GPU Advect

1: // Advection Phase

2: for all kernel ki in parallel do

3: for all pi mapped with ki do

4: pt+∆t
i
= φ(∆t, pt

i
,ut)

5: end for

6: end for

7: // Compute d∗
i

8: for all kernel ki in parallel do

9: for all pi mapped with ki do

10: d∗
i
= dmaxccurvature

i
cturbulence

i
+ ε

11: end for

12: end for

13: // Compute Diffused d∗
i

as di

14: for all kernel ki in parallel do

15: for all pi mapped with ki do

16: di ←
∑w

n=−w G(α, n)d∗
i+n

17: end for

18: end for

19: // Subdivision Phase

20: for all kernel ki in parallel do

21: repeat

22: for all pi mapped with ki do

23: if ||preference
i

− pi|| < di/2 then

24: collapse preference
i

25: reconstruct connection

26: pop preference
i

from ki

27: else if ||preference
i

− pi|| > di then

28: subdivide pnew = Eq. (2)

29: insert pnew into ki

30: reconstruct connection

31: end if

32: end for

33: until no subdivision or collapse made

34: end for

Algorithm 2 GPU Diffuse

1: r ← 2*random()+1

2: for all even number of kernel ki in parallel do

3: for all pi mapped with ki do

4: ni ← number of mapped tasks with ki

5: ni+r ← number of mapped tasks with ki+r

6: if ni > ni+r + 1 then

7: move a task from ki to ki+r

8: else if ni < ni+r − 1 then

9: move a task from ki+r to ki

10: end if

11: end for

12: end for
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(a) Kernels and stored vertices

(b) Connection Map

(c) Vertex Buffer

Figure 6: Device memory map of task vertices: This example is

configured with four kernels and four maximum slots for each kernel.

The arrows in the connection map indicate the references task (ver-

tex). The vertex buffer is filled based on the references and where the

vertices belong.

ically based animations, where a number of models have

been proposed to achieve natural transformation while

correcting volume errors well.

In our approach, we extended the method of Funck

et al. [10], Müller [23] and Rohmer et al. [27] to fit our

2-dimensional applications, and solve the problem by

stretching the vertices in their normal directions with

the minimal sum of movement so that the initial volume

is recovered, as illustrated in Figure 7. Let p , n and

V(·) be vertices array, displacement normal vector and

area function, respectively. As derived by Green’s law,

the volume (Area) of p is given by

V(p) =
1

2

∑

i

(pi × pi+1) · ez, (8)

where ez denotes z-direction of unit vector. Let pinitial

and pcorrect be initial vertices array and corrected vertices

array where each component is denoted by pcorrect|i =

pi + xini. Normal vectors for each vertex are given by

ni = (pi+1 − pi−1)/||pi+1 − pi−1|| × ez. Similarly to Müller

[23], the volume change of correction is well approxi-

mated by

∆V(pcorrect, p) =
1

2

∑

i

xi ||pi+1 − pi−1||, (9)

where ∆V(p, q) = V(p) − V(q) denotes the difference

of volume between two sets of closed contour vertices.

If we compact a known part into a new vector c, where

Figure 7: Our volume correction strategy: The volume is corrected

by stretching or shrinking series of vertices toward their normal direc-

tions in such a way that the sum of every movement at the vertices is

kept to a minimum.

each component is denoted by ci = ||pi+1 − pi−1||, the

volume correction is written with the following vector

product:

∆V(pcorrect, p) = c · x/2, (10)

where x = [x0, x1, · · · , xi]. Because we want this correct

function to actually cancel the produced error,

c · x/2 = −∆V(p, pinitial) (11)

in such a way that the sum of the vertices movement

should be kept to a minimum. Hence, our problem is

formulated as
{

minimize ||x||2

subject to c · x + 2∆V(p, pinitial) = 0,
(12)

We solve this constraint minimization problem by

translating it into an unconstrained format using La-

grangian multipliers. Finally, the analytical solution of

the equation is expressed as

x = −
2c

||c||2
∆V(p, pinitial). (13)

This approach runs fast because the equation is evalu-

ated explicitly. After this correction, the initial volume

is recovered approximately. If we have the proximity

value computed in equation 7 beforehand, we may scale

the normal vector to ensure that the vertices will not

pass through the opposite contours around the adjacent

regions as ni ←
{

1 − exp(−dproximity)
}

ni. Our conse-

quent volume correction algorithm is illustrated in Al-

gorithm 3. When compared to that of Müller [23],

our method is slightly more complicated. However, the

volume error is guaranteed to be corrected with smaller

amount of changes of vertices than that of Müller [23].

Our volume conservation can be coupled with multiple

separated regions without special modification, but, in

such cases, although the volume of an individual island

may not be corrected, the sum of all areas will be cor-

rected.
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Algorithm 3 CorrectVolume(p, pinitial)

1: e← ∆V(p, pinitial)

2: Allocate c

3: csum ← 0

4: for all ci do

5: ci ← ||pi+1 − pi−1||

6: csum ← csum + c2
i

7: end for

8: for all pi do

9: pi ← pi − 2ni(eci/csum)

10: end for

3.6. Shape Simplification

In practice, we found that the number of vertices

propagates quickly over time as it develops swirly curls.

Because the simulation cost scales linearly with the

number of vertices, it is highly preferable that we re-

move the vertices in extremely thin lines that are hardly

visible to maintain real-time interaction as long as possi-

ble. In this section, we will provide a detailed outline for

performing this simplification. Note that this step can be

omitted at the user’s discretion because it eliminates de-

tail to varying degrees. Our approach for removing and

sewing the mesh is a modified version of the method of

Brochu et al. [5], where the meshes are reconstructed

by finding close surfaces under a predefined tolerance.

However, we add some additional operations to remove

thin lines, as requested by the user. The user may also

consider choosing other methods that offer precise topo-

logical changes under explicit surfaces, as mentioned in

section 2. Because we already have computed the prox-

imity value in equation (7), this method is much eas-

ier and less costly to employ than other grid trap based

methods. In the first stage, we start by finding vertices

that are close enough to each other and mark them with

reference to the closest vertex (Figure 8a).

These close vertices will hopefully be marked to-

gether. Unfortunately, some pinched vertices at the thin

line regions remain unmarked due to the noisy distribu-

tions of the vertices. We then decide whether the un-

marked vertices are those at the thin regions by search-

ing other marked vertices from that position with back-

ward and forward walking connections within the user’s

defined distances. If marked vertices are found in both

the backward and forward directions, we mark them

too. (Figure 8b). In the second stage, we detect split-

table vertices by searching a vertex, which is marked,

and the next unmarked forward vertex, as shown in Fig-

ure 8c. We then collapse the forward connections of the

splittable vertices and replace them with the references

to the proximity vertices. Finally, after unmarking the

Tolerance

(a) Mark Proximity

(b) Mark Propagation

(c) Split Detection

Contour Direction

(d) Reconstruct

Figure 8: Simplification Procedure: (a) Vertices that are closer than

a predefined tolerance are marked. The red circle represents marked

vertices, and the blue circle represents unmarked vertices. The red

bold lines indicate the proximity references. (b) The marked vertices

are propagated. (c) Marked vertices that have unmarked vertices on

their next connection are labeled as splittable vertices. (d) The for-

ward connections of the splittable vertices are collapsed and replaced

with references to the proximity vertices.

splittable vertices, the rest of the marked vertices are re-

moved to remove the thin regions. This simplification is

fast because the algorithm is parallel, but it sometimes

fails to sew new contours. To detect such failures, we

check whether the connection is valid, and we abandon

the simplification if we find invalid connections. In our

observation, this kind of failure takes place if the re-

gions that have numerous branches suddenly approach

each other. The algorithm is still practical though, we

can use it to extend the limits of the runnable time steps.

4. Results

A comparison with competing methods is shown in

Figure 9. The particle level-set result was generated

8



Figure 9: Competing methods for a shared fluid field. The particle

level-set method breaks the thin lines, and the Eulerian advection fil-

ters out details, whereas our method retains detailed features.

with an existing library [21]. The Eulerian advec-

tion was generated with a semi-Lagrangian advection

scheme. The clear edges were enforced using the con-

centration transformation function introduced by Acar

& Boulanger [2]. All of these results were computed for

shared fluid motion. Our computation took seven sec-

onds, while the others took more than ten minutes for a

1,600x1,600 grid. The thin line property was well main-

tained with our method, whereas the particle level-set

method broke the thin lines, and the Eulerian advection

filtered them out, even at high resolutions. Note that a

simplification test was not performed in this comparison

but will be described in a later section. The performance

with a single threaded CPU and GPU is illustrated in

Figure 10(a). Our implementation for a complex scene

on a GPU runs several times faster on a GPU than on a

CPU. Note that the performance of the GPU depends on

the size of the pre-allocated GPU memory because the

entire memory space is sent into the rendering pipeline.

The maximum size of this example was around 100,000

vertices.

However, Figure 10(a,b) reveals two critical limita-

tions of our method. First, the tractable number of time

steps is limited to around a few thousand (though this

number depends heavily on the environment), which

can be easily reached. Second, the contours are interac-

tively tracked only up to around 100,000 vertices. De-

spite these limitations, we found that our method is quite

practical for creating organic fluid components in terms

of the number of vertices (See Figure 10(c)).

The effects of volume correction are shown in Figure

11. In this example, the two figures are generated under

a 16x16 coarse flow grid with the left one uncorrected

and right one corrected. These may look similar at a

glance; however, the volume of the left figure has been
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Adaptive Refinement with Proximity 
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Figure 10: The performance of our method with Adaptive Refine-

ment: (a) At 10,0000 vertices, the CPU recorded 4 FPS while the

GPU recorded 17 FPS. (b) Vertex propagation in time. The number

of time steps that can be interactively simulated is limited due to the

sharp increase in the number of vertices. (c) Generated vector graphic

and its number of vertices.

inflated to a size that is 40% larger than that of the initial

state. In the right figure, the correction was performed at

every time step, but we did not experience critical lags

in terms of real-time interaction. As shown in Figure

12(b), the correction only slows performance between

5% and 20%. From our observations, however, the cost

is almost ignorable if the number of vertices exceeds

10,000.

The quality and precision of the correction is illus-

trated in Figure 12(a). Without the correction, the

volume error varies unsteadily during the simulation,

whereas with the correction, the volume error is com-

pletely canceled. However, our correction step only ad-

justs the volumes without accounting for the local fea-
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(a) Without Volume Correction (b) Volume Corrected

( 40.4 % Volume Increased) ( 0.000 % Volume Error )

Figure 11: Comparison of volume changes between uncorrected

and corrected deformation: The two shapes were advected under

a shared motion except that the volume of the right shape (b) was

corrected at every time step.

tures. As a result, the user may observe unwanted fea-

ture changes around curves or shared boundaries be-

tween two regions. For such special local curves, we

can suppress the artifacts by scaling normal vectors by

zeros, but then volume correction may not work effec-

tively.

The effect of the simplification step is shown in Fig-

ure 13. In this figure, the tolerance is set to either ε/2

or ε/4, where ε denotes the minimum sampling rate

defined in equation 3. If the tolerance is set to the

larger value, as in Figure 13(a), a significant portion

of thin details will be removed, which results in fea-

tureless stencil art. However, if tolerance is set to the

smaller value, as in Figure 13(b), the thin details may

be kept, but the simplification will rarely be triggered.

Therefore, we designed the tolerance degree to be con-

trolled by the user, allowing him or her to choose the

amount of detail. This simplification test can be com-

pleted at arbitrary time steps, especially when the user

desires it, because our marbling flow is essentially colli-

sion free. However, the test should be processed at least

once at fixed, large intervals because numerical advec-

tion produces collisions and increases chance of failure

for sewing new separate contours. Note that our sim-

plification algorithm is not stable because it can fail to

detect adjacent contours and special care should be paid,

as described in section 3.6. Our simplification algo-

rithm can be naively coupled with the volume correction

step because, even though the topology has changed, we

Uncorrected

Corrected

Corrected

TimeStep (a)

E
rro

r R
atio

TimeStep (b)

F
P

S

Uncorrected

Figure 12: Volume error, the cost of correction induced by defor-

mation and the complexity table: (a) Under the coarse flow grid, the

volume error in the deformation accumulates slowly over time if no

correction is made. With the volume corrected, such volume errors

are completely canceled. (b) Our simulation of the volume correction

only has a cost between 5% to 20% of that without correction. When

it comes to hundreds of time steps, its latency is almost ignorable. (c)

These marbling silhouette show how the shape develops as it subdi-

vides with number of vertices.

can still differentiate the volumes with equation 8. It is

also still naive to export the topological complex shape

into a vector graphics file using complex path attribu-

tions. For instance, some vector based programs treat

clockwise paths as “holes” and counterclockwise paths

as “solid regions” and vice versa. Fortunately, our sim-

plification algorithm naturally handles this problem, as

shown in Figure 14. In this example, the direction of

connection is counterclockwise before merging (a). Af-

ter merging (b), the connection of the solid region is

counterclockwise, but the connection of the hole region

becomes clockwise.

5. Applications

We built an interactive prototype both on a Quad Core

Xeon 2.8 GHz processor and a GeForce GTX 260 run-

ning Linux. The underlying fluid was computed with a

64×64 grid resolution. With our prototype, users are al-

lowed to drop pigments on the surface of the water and

disturb it by simply dragging the mouse. In this sec-
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(a) Tolerance  =      / 2 (b) Tolerance  =      / 4

Figure 13: Simplification at various tolerance: If the tolerance is

large (a), it often kills the interesting stripe patterns of the marbled

shape. In contrast, if tolerance is small (b), the effect would be hardly

be noticeable, but the simplification would rarely be triggered. ε is the

same value used in equation (3).

counterclockwise counterclockwise

clockwise

(a) Before Merging (b) After Merging

Figure 14: Directional changes in simplification: The simplifica-

tion event changes the direction of vertices connections from counter-

clockwise to clockwise, which determines whether the path is a “hole”

or “solid” in a vector graphics format.

tion we introduce some interesting applications of our

method, and we explore the feasibility of our method.

5.1. Marbling and Sumi-nagashi

Figure 15 shows an example of a complex vector

fluid generated with our method. When creating this

silhouette, the artist experienced responsive interac-

tions just as with real marbling. As can be seen from

the figure, our method is powerful enough to design

stylish curly shapes similar to those found in marbling

or sumi-nagashi. One particularly convenient charac-

teristic of our vector fluid method is that such closed

contours are directly translatable into vector-based pro-

grams. Figure 16 shows an example of a shape imported

into Adobe c©Illustrator c©and Adobe c©Flash c©. Because

Figure 15: Complex marbling-like silhouette: This vector fluid was

created with our GPU prototype. During the simulation, the rendering

and interaction were responsive.

Figure 16: Shape imported into Adobe c©Illustrator c©and

Adobe c©Flash c©: Our vector fluid can be directly exported

into a vector based program without losing detail.

our vector fluid is wholly described in vector graphics,

artists are allowed to print the images with limitless high

resolution.

5.2. Shape Designing Tool

With a highly viscous fluid, the velocity rapidly dif-

fuses through the entire space so that the effect of ad-

vection is only noticeable just after the user agitates the

fluid. This feature provides artists ample time for each

interaction, and it offers undo&redo functionality. This

effect can be exploited for instant stylish, curly design-

ing. As an example, Figure 17 was created by an artist

through a trial and error process with the undo function.

5.3. Target-Driven Design

The underlying fluid can be controlled by external

forces. For example, we can combine with a target-
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1 2

34

Figure 17: A stylish logo created with viscous fluid. This figure was

interactively created by an artist through a trial and error process. The

right side of the table shows snapshots of the design process.

Figure 18: Effects of target-driven vector graphics: When combined,

our vector fluid can be used to design user-specified stencil art with

curly, fluid textures.

driven fluid field [9] to guide regions into a specified

target shape. In our implementation, a solid region was

rasterized and blurred at each time step. We skipped the

smoke gathering procedure because our vector field was

not dissipative. Figure 18 shows an example of target-

driven smoke animation effects. To generate this figure,

we first placed small ovals randomly on the canvas; then

we gathered them according to the guiding flow.

5.4. Vector Graphics Editing

Using our method, artists are also allowed to edit ex-

isting vector graphics to depict marble-like clip art, as

shown in Figure 19. Despite of the complex visual fea-

tures of beautifully designed vector graphics, the vec-

tor graphics are only a collection of concave polygons.

Hence, we can trivially achieve this effect by simply

extracting each concave polygon embedded in the vec-

tor graphics and advecting them under shared fluid mo-

tion. In this example, we retrieved path information

through Adobe c©Illustrator c©directly and displaced or

subdivided the path with the software API. Hence, the

way in which additional information, such as gradient

colors in a house or dots on a fish, propagates depends

on the implementation of the host program. However,

Figure 19: Swirled vector graphics clips: Because vector graphics

files are a collection of closed paths, we can individually advect those

paths under shared motion to deform any kind of vector graphics.

we believe similar visual effects can be easily replicated

by filling with patterns or naive gradient fills using sten-

cil masks.

5.5. Flash Animation

Our vector fluid can be efficiently animated on a

web browser using Adobe c©Flash c©(but not interac-

tively). To export it into a Flash movie, each frame

was computed and exported as a vector graphic. Those

frames were then simplified using a built-in func-

tion provided with the commercial software. More

specifically, we used the “Simplify Path” function on

Adobe c©Illustrator c©. Finally, the sequential frames

were imported into Adobe c©Flash c©.

The animation was rendered with the built-in Flash

engine so that it could be rotated or zoomed dynami-

cally. As can be seen from Figure 20, our vector fluid

offers a new medium for web page design. The frame

rates in Flash are quite high. We couldn’t measure a

precise performance, but, in this example, the animation

performed stably at 30 FPS on a laptop PC.
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Figure 20: Vector fluid animated in a web browser using the built-in

Flash renderer. To animate in Flash, a sequence of vector graphics

frames was precomputed and stitched.

6. Limitations

Despite our “Adaptive Refinement” technique, GPU

acceleration and the simplification steps, our method

has inherent limitations with respect to the number of

vertices and time steps that can be interactively simu-

lated. The underlying fluid flow should be somewhat

viscous to keep the contours tractable because small

vortices rapidly increase subdivision. Each time step

should also be small, otherwise the advection will pro-

duce many collisions. Note that these kinds of collisions

do not cause the simulation to hang, although they do

cause some remarkable artifacts that are apparent when

the figures are examined closely (Figure 21).

Moreover, all vector graphics programs have a max-

imum number of vertices that one vector graphics path

object can hold. In our current prototype, we try split

regions into two graphics objects that are separated at

the thinnest point if we reach this maximum number,

and we halt the simulation if it fails. But in practice, we

found this kind of limitation can be easily avoided by

starting simulation with three or four isolated regions

because those regions usually develop evenly complex

over time. In such cases, the number of vertices merely

reaches the maximum that one graphic object can han-

dle before the simulation becomes slow.

As described in the latter of section 3.6, our sim-

plification test can sometimes fail in specific situa-

tions. Most of the failures can be detected by check-

ing whether the connection is circular around the split

vertices. In our prototype, we undo such failed simplifi-

cations as a remedy.

7. Discussion

We believe that the real-time interaction and the aes-

thetics of the rendered silhouettes are the most impres-

sive aspect of our method. Traditional approaches to

Figure 21: Result of intersection of contour: Because this is a nu-

merical method, collisions are inevitable; however, unless the user

looks closely at the artifact, the collisions may be tolerated. These

collisions can be reduced by embedding equation 7 into equation 3 at

the expense of the insertion of extra vertices.

fluid dynamics in computer graphics based on Eulerian

grids or Lagrangian particles suffer from numerical dif-

fusion or blobby artifacts when they are applied to the

generation of clear surface flow silhouettes. It may be

possible to achieve the same goal by employing state-of-

the-art front tracking methods, but our method is greatly

simplified and specifically tuned to produce more rea-

sonable results. The GPU acceleration and the fast ren-

dering technique presented in this paper are only fea-

sible within two dimensions. The overall idea may be

conceptually extendable to three dimensions; however,

it is not practically feasible.

8. Conclusion

In this paper, we presented a new method for creat-

ing marbling textures using an explicit surface track-

ing method. The principle idea behind our method is

that the contours of the marbling shape rarely collide.

To achieve real-time, high-quality marbling rendering,

we sampled contours adaptively according to curvature

and turbulence. We also ported the base algorithm on

a GPU and thus increased the interactive performance

to several times faster than that of a CPU. To correct

volume errors, which accumulate slowly over time, we

presented a fast and accurate volume correction method

that maintains the exact volume at any time step. Fi-

nally, we removed extremely thin lines according to user

preference to massively reduce vertices involving topo-

logical changes. As shown in the results and the appli-

cations, our method can produce unique marbling tex-

tures that have detailed swirly and striped patterns. We

believe that our method opens up a new opportunity for

vector artists. However, although our prototype is inter-

active, the running time of our method increases sharply

as the contour stretches. In future work, we would like
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to modify our method to increase its ability to deal with

more complex scenes.
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