
Eurographics/ ACM SIGGRAPH Symposium on Computer Animation (2011)
A. Bargteil and M. van de Panne (Editors)

A Particle-based Method for Preserving Fluid Sheets

Ryoichi Ando1 and Reiji Tsuruno2

1Graduate School of Design, Kyushu University, Japan
2Faculty of Design, Kyushu University, Japan

Abstract

We present a new particle-based method that explicitly preserves thin fluid sheets for animating liquids. Our

primary contribution is a meshless particle-based framework that splits at thin points and collapses at dense points

to prevent the breakup of liquid. In contrast to existing surface tracking methods, the proposed framework does not

suffer from numerical diffusion or tangles, and robustly handles topology changes by the meshless representation.

As the underlying fluid model, we use Fluid-Implicit-Particle (FLIP) with weak spring forces to generate smooth

particle-based liquid animation that maintains an even spatial particle distribution in the presence of eddying or

inertial motions. The thin features are detected by examining stretches of distributions of neighboring particles

by performing Principle Component Analysis (PCA), which is used to reconstruct thin surfaces with anisotropic

kernels. Our algorithm is intuitively implemented, easy to parallelize and capable of producing visually complex

thin liquid animations.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling—Physically based modeling I.3.7 [Computer Graphics]: Three-Dimensional Graphics and
Realism—Animation

1. Introduction

Over the past decades physically based simulations of fluid
have attracted much attention in the graphics community
[Bri08]. State-of-the-art fluid animation has proven effective
for creating impressive scenes of various fluid phenomena,
such as smoke, fire, and water, and is widely used in the film
industry.

In recent years, the interest in simulating thin liquid sur-
faces has been growing [M0̈9,WTGT09,WTGT10,BBB10].
The thin fluid features are very difficult to track precisely
with traditional methods. An Eulerian representation such
as the level set method [OS88] filters the features due to the
numerical diffusion. The particle level set method [ELF05]
breaks up thin sheets at the reinitialization phase. Present
day researchers favor the use of a mesh-based surface track-
ing method, also known as the front tracking method, under
an Eulerian fluid flow. The surface tracking method typically
represents surfaces explicitly with vertices connected in a tri-
angle that is advected through the underlying fluid motion.
Unlike implicit approaches, the surface tracking method can
keep details smaller than a grid cell and is free from numer-

ical smear; however, the topology changes are complex and
so the algorithm also becomes complex.

Particle-based methods have become popular since the
introduction of the SPH method in computer graphics by
Müller et al. [MCG03] due to their ease of implementation
and interactive applications [GSSP10, HKK07, YWH∗09].
Conventional particle-based methods are feasible for ani-
mations of splashes, although the animations suffer from
oscillations due to the large spring forces, which make
it difficult to track thin fluid features. Many Eulerian-
Lagrangian hybrid approaches have been proposed [SBH09,
ZB05, LTKF08], but these methods can exhibit splashy par-
ticle behaviors for tracking liquid in our applications.

In this paper, we introduce a new particle-based frame-
work that preserves thin fluid features like those in Eulerian
fluid. Note that our method is not a family of surface track-
ing methods in which surfaces are discretized only around
the surfaces. In our method, particles are placed both on the
surfaces and inside the liquid domain similarly to the SPH
method. To achieve our goal, we use a Particle-In-Cell/Fluid-
Implicit-Particle (PIC/FLIP) [ZB05] method as an underly-

c© The Eurographics Association 2011.

Ryoichi Ando, Reiji Tsuruno / A Particle-based Method for Preserving Fluid Sheets

Figure 1: Water splash by our method. Left two columns: A visualized splash with particles. The pink points indicate newly

inserted particles. Third column: A thin surface generated by anisotropic kernels. Fourth column: Our method without particle

insertion at the same timing.

ing fluid solver with weak SPH-like spring forces to make
the overall distribution less uneven.

Our main contribution is a purely meshless particle-based
method that keeps thin fluid sheets. The thin sheets are pre-
served by inserting new particles at sparse thin points in
the sheets. These particles are then quickly removed as they
dive into the deep water. Our work is greatly inspired by the
anisotropic kernel method proposed by Yu and Turk [YT10].
This method performs the PCA over the neighboring parti-
cles to compute the stretch and orientation of a particle for
reconstructing sharp smooth surfaces. We use the stretches
as criteria to judge whether to insert particles (see Figure 1).

2. Previous work

Our work draws upon a broad range of backgrounds in fluid
animation, including particle-based liquid animations and
surface tracking methods applied to fluids. In this section,
we briefly review the research closely related to our work.

State-of-the-art surface tracking for liquid can be catego-
rized into two approaches: the implicit method and the ex-
plicit method. The level set method proposed by Osher and
Sethian [OS88] is one of the most popular implicit meth-
ods. In the level set method, each grid node is assigned a
distance function from the closest surface position, and the
surface is implicitly located where the function is zero. The
method has been refined and revised in many ways. En-
right et al. [EFFM02], Wang et al. [WYS09], and Mihalef
et al. [MMS07] placed Lagrangian particles to reduce nu-
merical dissipation. Bargteil et al. [BGOS06] updated the
signed distance field from a reconstructed surface mesh to
increase the accuracy. Heo and Ko [HK10] preserved the
surface detail with a spectrally refined level set (SRL) and
a high-order re-initialization method. These implicit meth-
ods can be utilized to increase the overall detail with a high
resolution grid. However, to the best of our knowledge, such
methods cannot completely prevent the rupture of thin sur-
faces. In addition, some researchers used seed particles to
produce splashes [FF01, GSLF05, KCC∗06] or to preserve

sheets [CFL∗07]. We only use particles so that the data struc-
ture is more consistent.

Among the explicit approaches, Hirt and Nichols [HN81]
proposed a volume-of-fluid method that uses a proportion
of the interface for the entire cell. This method is seldom
employed due to the difficulties of handling a discontinu-
ous interface. In explicit methods, Lagrangian approaches
are preferred. Over the past two decades, a number of mesh-
based surface tracking methods have been proposed through
a variety of research fields, such as medical image analy-
sis and fluid dynamics [KWT88, GGL∗98, TBE∗01, M0̈9,
BB09,WTGT09,WTGT10]. Typically, a mesh-based surface
tracker advects explicit surface elements by the underlying
motion; however, this method suffers from self-intersection
or complex topology changes. These issues may be resolved
by trapping complex meshes with uniform cubic cells, or
searching adjacent points and resampling them. This strat-
egy tends to make the algorithm complex because it needs to
tolerate numerous complex situations. We must emphasize
that our method is far from the family of surface tracking
methods. In comparison, our particle-based approach does
not hold any mesh information. Thus, our method does not
suffer from such complexities.

Particle methods such as the Smoothed-Particle Hydrody-
namics (SPH) method [MCG03, BT07, SP09], the Moving
Particle Semi-implicit (MPS) method [KTO96, PTB∗03],
and the meshless physical simulations [PKA∗05, KAG∗05,
GBB09] are usually used not only to simulate entire phys-
ical motion, but also to reconstruct surfaces. Blinn [Bli82],
Zhu and Bridson [ZB05], Adams et al. [APKG07], and Yu
and Turk [YT10] proposed a novel surface reconstruction
algorithm from a point cloud. In their method, surfaces are
implicitly defined with respect to the distance from parti-
cles. However, these methods exhibit poor, blobby ruptures
where the particles are sparse. In our particle-based method,
we employ the method of Yu and Turk [YT10] to reconstruct
surfaces after filling ruptures with extra particles so that the
sheets are preserved.

Our splittable particle-based approach is considered to be

c© The Eurographics Association 2011.

Ryoichi Ando, Reiji Tsuruno / A Particle-based Method for Preserving Fluid Sheets

Figure 2: Two-dimensional dam break. Left: Our liquid

simulator. Right: The PIC/FLIP method. Notice that the spa-

tial particle distribution is almost uniform in our image

while the PIC/FLIP image is uneven.

a variation of the adaptive particle-based method [APKG07,
HHK08, YWH∗09]. The biggest difference between the
methods is that ours is specifically designed to keep the con-
tinuous fluid sheets whereas the other adaptively resamples
particles with ones of a different size to reduce the computa-
tional cost while retaining the visual detail.

3. Underlying Fluid

This section describes an underlying liquid solver which
we used to generate smooth liquid motion for preserv-
ing thin surfaces. Our liquid solver is actually a slightly
modified version of the Particle-in-Cell/Fluid-Implicit-
Particle (PIC/FLIP) method [ZB05], which is an Eulerian-
Lagrangian hybrid approach in which a liquid domain is dis-
cretized with a collection of particles. Given a particle dis-
tribution, the fluid velocity uuu and the particle density ρ at
location xxx are computed as

uuu(xxx) =
∑i miuuuiWsharp(pppi− xxx,α1d0)

∑i miWsharp(pppi− xxx,α1d0)
(1)

ρ(xxx) = ∑
i

miWsmooth(pppi− xxx,α2d0), (2)

where d0, pppi, uuui and mi denote the initial space between par-
ticles, the position, the velocity and the mass of a particle
i, respectively, and α1 and α2 are the scaling constants for
radius d0. We used α1 = 1.0 and α2 = 4.0. For weighting
kernels we used two simple kernels:

Wsharp(rrr,h) =

{

h2/||rrr||2−1 0≤ ||rrr|| ≤ h

0 otherwise,
(3)

Wsmooth(rrr,h) =

{

1−||rrr||2/h2 0≤ ||rrr|| ≤ h

0 otherwise.
(4)

Any kernels would fit our application if they draw simi-
lar curves. In our kernels, Wsharp(rrr,h) is designed to re-
sample a quantity of the particle such that uuu(pppi) = uuui, and
Wsmooth(rrr,h) is used to compute the average of quantities of
the nearby particles. To compute uuu(xxx) and ρ(xxx), we sorted
every particle beforehand into the grid cells and searched
nearby particles at xxx from nearby grid cells. For special
cases, Equation 1 picks the nearest particle velocity if the

Figure 3: Effect of our weak spring force. From top to

bottom rows: uniformly placed PIC/FLIP, jittered placed

PIC/FLIP, uniformly placed PIC/FLIP with the spring force.

Left two columns: without particle split. Right two columns:

with particle split.

denominators are close to zero. The liquid cell is determined
by evaluating whether the cell satisfies

∑
i

ρ(pppi)≥ α3N0ρ0, (5)

where i, ρ0, α3, and N0 denote the particle index within a
cell, the initial maximum density at the beginning of the
simulation, the constant rate that tolerates sparse fluid, and
the initial number of particles placed in a cell, respectively.
We consistently used α3 = 0.2 and N0 = 22 for 2D and
N0 = 23 for 3D in our implementation. In contrast to the
original PIC/FLIP approach, this determination skips liquid
flags around the area where particles are sparse, such as a
liquid sheet or gaps in the liquid domain. We found this clip-
ping prevents liquid particles from floating on the surface of
the liquid, and avoids a volume increase of the liquid do-
main.

In the first step of our simulation, the advected dirty par-
ticle velocity is mapped onto a Marker-And-Cell (MAC)
grid. The incompressible velocity on the grid is solved in
a conventional manner. In PIC [Har64], the projected grid
velocity is mapped to the particles to yield an incompress-
ible particle flow. In our implementation, we used Equation
1 to map the velocity from the particles to the grid, and per-
formed a trilinear interpolation from the grid to the particles.
PIC naturally carries the momentum by particles instead of
grid-based advection. Notwithstanding, PIC is known to in-
volve successive diffusion due to the back-and-forth remap-
ping of velocities. Later, FLIP [BR86] was proposed to im-
prove the diffusion problem. In FLIP, the changes of the
grid velocity from a previous time step is mapped to the
particles, and the changes are used to increment particle ve-

c© The Eurographics Association 2011.

Ryoichi Ando, Reiji Tsuruno / A Particle-based Method for Preserving Fluid Sheets

(a) Input Simulation (b) Thin Sheet Area Detection (c) Candidate Position Detection (d) Particle Insertion

Figure 4: Algorithm Overview. (a) Given an input collection of particles, (b) we clip out thin particle clouds. To fill in breaking

sheets, (c) we compute the candidate particle positions for insertion and (d) we insert the particles with moderate spacing.

locities to obtain the new velocity. These particles are then
moved through the grid velocity field. Unlike PIC, FLIP does
not suffer from numerical dissipation; however, FLIP suffers
from noisy behavior. In the PIC/FLIP approach [ZB05], such
noise is slightly flattened by linearly blending PIC and FLIP
by some scalar k, as follows:

uuu = PIC/FLIP(uuu∗) = k FLIP(uuu∗)+(1− k)PIC(uuu∗). (6)

where uuu∗ and uuu denote the dirty velocity of particles after the
advection and the new particle velocity, respectively. Typi-
cally, k is close to 1. In our implementation we set k = α4,
where α4 = 0.75 ∼ 0.85. For the time step size, we set
∆t = 0.6 · 10−2. A PIC/FLIP linear interpolation could pos-
sibly be used to adjust the visual viscosity of a liquid, but
both PIC and FLIP deform the spatial particle distribution
unevenly. To alleviate this problem, we displace particles by
SPH-like artificial weak spring forces, as follows:

fff i =−α5d0 ∑
j

ppp j− pppi

||ppp j− pppi||
Wsmooth(ppp j− pppi,d0), (7)

where α5 denotes the stiffness of the spring. We set α5 = 50.
After the particle positions are slightly moved by pppnew = ppp+
∆t fff , we resample a new particle velocity from uuu such that
uuunew = uuu(pppnew). Note that the mass of a particle is neglected
since the spring works as a position corrector.

Because the spring is weak, it does not instantly improve
the uneven problem, but, as PIC/FLIP gradually improves
noise, our spring also slowly improves the uneven particle
distribution. We found this also alleviates the volume loss of
the liquid. Another advantage of our simulator is that it al-
lows us to take large time steps, which are not allowed in the
traditional SPH method. It should be taken into account that
the resampling of a new particle velocity introduces extra
diffusion, and, thus, the final visual viscosity must be ad-
justed together with the PIC/FLIP damper. This may seem
to counteract FLIP, but we found viscous behavior is appro-
priate for generating thin liquid animations. Combining PIC
and a weak spring force is also possible, but we found this
combination was too viscous for our underlying liquid ani-
mation.

For obstacles, in addition to the boundary conditions on a

mapped MAC cell, we place obstacle particles at the center
of MAC cells underneath the wall surfaces. When fluid par-
ticles contact a wall particle, we push them out in the normal
direction. The spring force of Equation 7 is computed within
wall particles to compute the wall normal vectors. Although
mesh obstacles might be directly used to handle collisions,
we found this approach is much easier than implementing
full collision detection with meshes.

Figure 2 shows a two-dimensional comparison with the
PIC/FLIP method alone. In our fluid simulator, we found
water keeps spinning for a long time while gaining even spa-
tial particle distributions. In the PIC/FLIP method, we ex-
perienced volume loss and uneven spatial particle distribu-
tions. Figure 3 shows a three-dimensional comparison with
and without the weak spring force. Without the spring, parti-
cle distribution can easily develop unevenly. In this scenario,
jittered placed particles may alleviate the issue, but this tech-
nique works only at the beginning of the simulation; even-
tually, the distribution will become uneven. In contrast, our
method is capable of correcting this issue. It may still be pos-
sible to apply the sheet preserving algorithm, which is intro-
duced in the next section, to PIC/FLIP alone, as can be seen
in the right column of the figure. But without the correction,
our sheet preserving algorithm can be triggered frequently,
and the uneven particle distribution can fail to find best posi-
tion to split particles. In this case, some sheets can unevenly
break up.

4. Preserving Sheets

The main highlight of our method is an algorithm to preserve
thin sheet by inserting extra particles at breaking fluid holes.
Figure 4 illustrates an overview of our procedure. First, we
extract thin fluid sheet particles. Within those particles, new
candidate particle positions are suggested and carefully in-
serted to avoid collisions. We describe the step details in the
following subsections.

4.1. Thin Particle Extraction

We exploit the anisotropic kernel method [YT10] to detect
thin sheets. To do this, we first compute the weighted aver-

c© The Eurographics Association 2011.

Ryoichi Ando, Reiji Tsuruno / A Particle-based Method for Preserving Fluid Sheets

age covariance of particles C, as follows:

Ci =
∑ j(ppp j− pppi)(ppp j− pppi)

TWsmooth(ppp j− pppi,α2d0)

Wsmooth(ppp j− pppi,α2d0)
, (8)

where

pppi =
∑ j ppp jWsmooth(ppp j− pppi,α2d0)

Wsmooth(ppp j− pppi,α2d0)
. (9)

The Singular Value Decomposition (SVD) of the associated
Ci yields the direction and the stretch of neighboring particle
positions as eigenvectors and eigenvalues, as follows:

Ci =

eeeT
1

eeeT
2

eeeT
3

T

σ1
σ2

σ3

eeeT
1

eeeT
2

eeeT
3

 (10)

where eeen and σn denote the principle axes ordered by the
variance and the degree of stretch, respectively. Note that the
SVD is applied only where α6ρ0 < ρ(pppi) < α7ρ0; otherwise,
diag(σ1,σ2,σ3) = III is used. We used α6 = 0.05,α7 = 0.7.
Since the SVD is applied only around the surfaces, it does
not monopolize the computation in terms of the number of
particles. The thin particles (Figure 4(b)) are extracted by
examining

σ3 ≤ α8σ1, (11)

where α8 denotes a threshold that determines the thin de-
gree. In our implementation we used α8 = 0.2. These thin
particles are used to split particles in the next step.

4.2. Finding the Candidate Position

Within the extracted thin particles, we search for pairs
(pppi, ppp j) that bridge the breaking holes. A midpoint of the
pair (pppi + ppp j)/2 is recorded as a candidate position to split
(Figure 4(c)). In our method we choose pairs (pppi, ppp j) that
satisfy all of the following conditions:

all

α9d0 ≤ ||ppp j− pppi|| ≤ α10d0

∑k Wsmooth((pppi + ppp j)/2− pppk,α9d0) = 0

(ppp j− pppi) · (uuu j−uuui) > 0

(12)

where α9 and α10 denote constants that control the minimum
and maximum space of candidate positions, respectively. We
use α9 = 0.8 and α10 = 3.5. In the first row of Equation 12,
we check whether the two particles lie at a moderate dis-
tance from each other. In the second row, we check whether
the candidate midpoint is sparse enough to contain a new
particle at radius α9d0. Note that at this time, scarcity is
only checked among existing particles. The third row checks
whether the distance is increasing between the pair of parti-
cles with the passing of time. Once these pairs are found,
we put the midpoints into list S without duplication. We il-
lustrate the example of candidate positions with and without
thin particle detection in Figure 5.

Figure 5: 2D thin particle clipping. Left: Simulation input.

Right: Both the solid and the open red particles satisfy Equa-

tion 12. Only the solid red particles satisfy Equation 11.

(a) Candidate Particles (b) Inserted Particles

2
3 4 5 6 7

1

Figure 6: 3D particle insertion (sheet viewed from the top).

(a): Suggested candidate particles. (b): Actually inserted

particles and insertion conducted in serial order by the num-

bers shown. A black contour indicates the particle radius.

4.3. Particle Insertion and Collapse

The candidate particles cannot be inserted naively because
these candidates are usually too crowded. To cope with this
problem, we describe a simple algorithm to insert candidates
at a moderate sparseness. Let I be a list of finally inserted
candidates indices. The first particle I1 is the most sparse
candidate within S, as follows:

I1 = argmin
j∈S

ρ(ppp j). (13)

Once I1 is found, we pop out every nearby candidate around
pppI1

from S that exists within radius α9d0. In the second step
we search for nearby particles NI1 in S around pppI1

that exists
within radius α11d0, where we set α11 = 2.0. If found, we
insert the closest candidate within NI1 as

I2 = arg min
j∈NI1

||ppp j− pppI1
||. (14)

If we formulate the search as In+1 = search(In), which
means I2 can be found from I1, we can repeat this task to
find I3, I4, · · · serially. If the next search fails, Equation 13 is
used instead. Figure 6 illustrates an example of our insertion
procedure. In this example, crowded candidates are carefully
inserted without collisions.

When splitting particles, every attribute is linearly inter-
polated except for the mass. In the case of splitting a pair
(pppi, ppp j), a new candidate mass is given by m = (mi +m j)/3.
After the split, new masses of particles i and j are reduced
to mnew

i = 2
3 mi,m

new
j = 2

3 m j . The change of mass affects the
functions of Equations 1 and 2.

c© The Eurographics Association 2011.

Ryoichi Ando, Reiji Tsuruno / A Particle-based Method for Preserving Fluid Sheets

Figure 7: Liquid stuck to an obstacle. Top: The liquid sheet

remains stuck to the dragon model. Bottom: The sheet was

removed by repositioning the stuck particles into the deep

water.

In contrast, an inserted particle pppi collapses if it satisfies
any of the two following conditions

any

ρ(pppi) > α12ρ0 and σ3 ≥ α8σ1

for any particle j ||pppi− ppp j||< α13d0
(15)

where α12 and α13 denote the maximum density coeffi-
cient and the minimum space, respectively. We use α12 =
0.2,α13 = 0.2. Nonetheless, this collapse can introduce a
flickering effect in terms of the cycle of the split and the col-
lapse. In our approach we reduce the flicker by waiting some
random time steps before the removal. We only remove the
particle if it continues to satisfy Equation 15. When remov-
ing particles, the mass is simply returned to the source of
its split particles. Note that this redistribution of mass can
lead to sudden non-local changes in momentum near both
the disappearing split particle and its owner particle. But the
effect is only temporary and is almost unnoticeable. When
splitting particles more than once, we track the hierarchy of
these parent particles, and the mass is returned to the top of
these parents.

The aforementioned split can trap liquid sheets on obsta-
cles. As a remedy, we detect particles that are stuck on walls
by watching whether the cells up or down from the particles
are a wall cell and whether the particle density is lower than

Algorithm 1 PRESERVE THIN FLUID SHEET

1: C← Compute Covariance Around ppp by Eq. 8
2: RΣRT ← SVD(C)
3: P← Extract Thin Sheet Particles(Σ) by Eq. 11
4: for all (i, j) ∈ P do

5: if a pair (pppi, ppp j) satisfies Eq. 12 then

6: S← Insert New Candidate (pppi + ppp j)/2
7: end if

8: end for

9: I1← by Eq. 13 in S // Find First Candidate to Insert
10: for n = 2,3,4, · · · do

11: In← search(In−1) in S as Eq. 14
12: end for

13: Insert New Particles I

14: Collapse Particles that Satisfy Eq. 15
15: Reposition Particles Stuck on Walls

some threshold ρ(pppi) < α14ρ0. If the particle is a split parti-
cle, we remove it from the simulation. If not, we reposition it
to some random place in the liquid so that the global volume
is maintained. The effect of the stuck sheet removal is shown
in Figure 7. In this example, we used α14 = 0.2.

5. Surface Reconstruction

The SVD information of Equation 10 is reused by
anisotropic kernels [YT10] to reconstruct the thin surfaces.
For brevity, we employed a simple implicit function:

φ(xxx) = min
i

(||Gi(pppi− xxx)||), (16)

where Gi denotes a deformation matrix in terms of particle i

Gi =
1
ks

eeeT
1

eeeT
2

eeeT
3

T

σ1
σ2

σ3

−1

eeeT
1

eeeT
2

eeeT
3

 (17)

where ks denotes a scaling constant such that ||ksCi|| ≈ 1.To
prevent a significant stretch, σn is constrained within some
range. Because we meshed with the Marching Cube algo-
rithm [LC87], we set the minimum stretch to be larger than
half of a grid width to make sure the thin sheets were cap-
tured. In addition, we applied straightforward mesh-based
smoothing to reduce the bumps.

6. Implementation

The pseudo code of the thin fluid sheet preservation is il-
lustrated in Algorithm 1. Every liquid solver step, such as
mapping between the grid and a particle, solving for pressure
and applying the weak spring correction, is done in a parallel
manner. The thin feature preserving algorithm is also paral-
lelized, except for particle insertion and collapse. In our im-
plementation we gained significant acceleration by OpenMP
directives.

c© The Eurographics Association 2011.

Ryoichi Ando, Reiji Tsuruno / A Particle-based Method for Preserving Fluid Sheets

Figure 8: Water drop on cubic tower. Top row: Our liquid

solver only. Middle row: Our liquid solver with the sheet pre-

serving algorithm. Bottom row: Visualization with the parti-

cles. The pink points indicate split particles.

7. Parameters

Our algorithm has numerous constant parameters. So far, we
have introduced 15 user-adjustable parameters α1 ∼ α14 and
∆t, but more are possible in actual implementation. In detail,
our fluid simulator has 6 parameters and the sheet preserv-
ing algorithm has 9 parameters. Fortunately, we found these
parameters are not sensitive in terms of stability. Thus, we
believe our constants can tolerate harsh implementation. ∆t

can be heuristically changed but it does not have to be very
small for stability.

8. Results

We produced several sequences of liquid animation by using
our method with a Core i7 Quad Core 2.8 GHz PC running
Linux. The meshing took approximately 10 to 30 seconds
and the transparent rendering took approximately 1 to 5 min-
utes per frame. The simulation took approximately 10 to 60
seconds per time step in the examples shown here. Figure 8
shows an example of a water drop splash on a cubic tower.
In this example, without the particle split, the water sheet
rapidly ruptures as it expands. Nevertheless, we successfully
maintained a continuous liquid sheet by inserting new parti-
cles in the holes. The inserted particles are shown in pink in
the bottom row of the figure.

The entire sheet preserving algorithm took up to 60% (or
more) of the simulation time, depending on the animation
complexity. The most time-consuming parts were the weak

Figure 9: Water pouring off a box cliff. Poured water jumps

off the cliff edge, maintaining a continuous fluid sheet and

then landing on the pool.

Figure 10: Timing of dam breaking test of Figure 13. The

water dam collapsed at approximately time step 80. This test

was simulated with approximately 770k particles at a 1003

grid size.

spring correction step and the density computation phase in
the liquid solver, which generally took approximately half
of the simulation time. Figure 10 shows the detailed timing
of the computational time of the dam breaking test of Figure
13. When the dam collapsed in approximately 80 steps, the
computational time of the sheet preserving algorithm sud-
denly grew; however, it gradually settled back to the time of
the original steps. In fact, we observed that our sheet pre-
serving algorithm did not exponentially increase the over-
all simulation time. This simulation ran with approximately
770k particles at a 1003 grid size.

Figure 9 shows an example of water pouring off the edge

c© The Eurographics Association 2011.

Ryoichi Ando, Reiji Tsuruno / A Particle-based Method for Preserving Fluid Sheets

Figure 11: The SPH method with the particle split. Left:

Our liquid simulator with the particle insertion. Right: The

SPH method coupled with our particle split method. Notice

that the SPH generates numerous strings.

of a box. Notice that the jumping sheets growing from the
cliff edge hit the pool without rupture. Each time step took
approximately 5 to 40 seconds. The number of liquid par-
ticles was approximately 576k. Blue transparent rendering
was done with PIXIE† and the point rendering was done with
pbrt renderer‡.

Figure 12 shows an Enright deformation test [Enr02]. In
this test, a solid sphere filled with particles is deformed
according to Enright’s artificial flow field. The thin sheet,
which is often filtered with the traditional level set method,
is well kept due to the extra particle insertion, shown in pink.
These particles are then removed as the deformation returns
to its original form.

9. Discussion

The SPH method can be used instead of our liquid solver.
However, we felt the SPH was noisy to couple with our
particle splitting method, even at high viscosity. Figure 11
shows a comparison of the SPH and our PIC/FLIP-based
fluid solver coupled with the sheet preserving method. As
can be seen from the figure, the splashy behavior of the SPH
makes it hard to detect unique thin fluid sheets. This behav-
ior may seem natural because we did not incorporate surface
tension. Perhaps, it may still be possible to couple the SPH
with our sheet preserving method.

In some cases the fluid sheet seems to limitlessly ex-
pand as it stretches, but it eventually breaks into pieces
of water drops because Equation 11 prevents splitting
when the density is too low (when the density is too low
diag(σ1,σ2,σ3) = III is used). However, in our example we
abandoned the split at some degree. As mentioned in the pre-
vious section, the weak spring correction step and the den-
sity computing phase were the most time-consuming parts of

† PIXIE: http://www.renderpixie.com/
‡ pbrt: http://www.pbrt.org/

our simulation, although those steps may be accelerated by
some SPH related techniques. In this paper we applied our
algorithm only with liquid, but it also would be applicable
to other phenomena such as viscoelastic materials or wispy
smokes.

We described a quick technique to remove the stuck sheet
on walls but in some experiments we found this method did
not work sufficiently. For example, we observed that liquid
keeps spilling out from objects longer than expected, but we
believe such artifacts can be alleviated by incorporating a
particle-based surface tension force. It may be possible to
place particles only on surfaces or around surfaces, as with
the Particle Level Set [EFFM02], but the inner domain must
be discretized in some manner to track liquid motion. In our
method, particles are directly coupled with a liquid solver,
so we believe that filling the liquid with particles is reason-
able. One of our promising extensions is to employ adaptive
approaches to increase the efficiency [HHK08], which we
leave as future work.

10. Conclusion

In this paper we described a new particle-based algorithm
that preserves thin fluid sheets. As an underlying liquid ani-
mation, we employed the PIC/FLIP method with the weak
spring force to generate a smooth liquid flow, which we
found effective for tracking thin fluid. To merge breaking
fluid sheets, we first clipped out an overall thin fluid area by
performing the PCA over neighboring particles. Within this
area, particles were carefully split to avoid collisions when
filling liquid ruptures. As shown in the results, our particle-
based method is effective in creating thin liquid animations.
In future work we would like to accelerate our algorithm and
expand into various physical phenomena.

11. Acknowledgements

We would like to thank our anonymous reviewers for their
many helpful comments which substantially improved this
paper. This work was supported by a research fellowship
from the Japan Society for the Promotion of Science.

References

[APKG07] ADAMS B., PAULY M., KEISER R., GUIBAS L. J.:
Adaptively sampled particle fluids. ACM Trans. Graph. 26 (July
2007).

[BB09] BROCHU T., BRIDSON R.: Robust topological operations
for dynamic explicit surfaces. SIAM Journal on Scientific Com-

puting 31, 4 (2009), 2472–2493.

[BBB10] BROCHU T., BATTY C., BRIDSON R.: Matching fluid
simulation elements to surface geometry and topology. ACM

Trans. Graph. 29 (July 2010), 47:1–47:9.

[BGOS06] BARGTEIL A. W., GOKTEKIN T. G., O’BRIEN J. F.,
STRAIN J. A.: A semi-lagrangian contouring method for fluid
simulation. ACM Trans. Graph. 25 (January 2006), 19–38.

c© The Eurographics Association 2011.

http://www.renderpixie.com/
http://www.pbrt.org/

Ryoichi Ando, Reiji Tsuruno / A Particle-based Method for Preserving Fluid Sheets

Figure 12: Enright deformation test. Our particle-based method can tolerate the thin features of Enright’s strong deformation

by particles that split at the breaking points (shown in pink) and collapse at the dense points.

Figure 13: Dam breaking test with our particle-based thin sheet preserving algorithm. Sequence order 1: Left top 2: Right

top 3: Left bottom 4: Right bottom.

[Bli82] BLINN J. F.: A generalization of algebraic surface draw-
ing. ACM Trans. Graph. 1 (July 1982), 235–256.

[BR86] BRACKBILL J., RUPPEL H.: Flip: A method for adap-
tively zoned, particle-in-cell calculations of fluid flows in two di-
mensions. Journal of Computational Physics 65, 2 (1986), 314 –
343.

[Bri08] BRIDSON R.: Fluid Simulation for Computer Graphics.
A K Peters/CRC Press, 9 2008.

[BT07] BECKER M., TESCHNER M.: Weakly compressible
sph for free surface flows. In Proceedings of the 2007 ACM

SIGGRAPH/Eurographics symposium on Computer animation

(Aire-la-Ville, Switzerland, Switzerland, 2007), SCA ’07, Euro-
graphics Association, pp. 209–217.

[CFL∗07] CHENTANEZ N., FELDMAN B. E., LABELLE F.,
O’BRIEN J. F., SHEWCHUK J. R.: Liquid simulation on lattice-
based tetrahedral meshes. In Proceedings of the 2007 ACM

SIGGRAPH/Eurographics symposium on Computer animation

(Aire-la-Ville, Switzerland, Switzerland, 2007), SCA ’07, Euro-
graphics Association, pp. 219–228.

[EFFM02] ENRIGHT D., FEDKIW R., FERZIGER J., MITCHELL

I.: A hybrid particle level set method for improved interface cap-
turing. J. Comput. Phys 183 (2002), 83–116.

[ELF05] ENRIGHT D., LOSASSO F., FEDKIW R.: A fast and ac-

c© The Eurographics Association 2011.

Ryoichi Ando, Reiji Tsuruno / A Particle-based Method for Preserving Fluid Sheets

curate semi-lagrangian particle level set method. Comput. Struct.

83, 6-7 (2005), 479–490.

[Enr02] ENRIGHT D. P.: Use of the particle level set method for

enhanced resolution of free surface flows. PhD thesis, Stanford,
CA, USA, 2002. AAI3067855.

[FF01] FOSTER N., FEDKIW R.: Practical animation of liq-
uids. In Proceedings of the 28th annual conference on Computer

graphics and interactive techniques (New York, NY, USA, 2001),
SIGGRAPH ’01, ACM, pp. 23–30.

[GBB09] GERSZEWSKI D., BHATTACHARYA H., BARGTEIL

A. W.: A point-based method for animating elastoplastic solids.
In Proceedings of the 2009 ACM SIGGRAPH/Eurographics Sym-

posium on Computer Animation (New York, NY, USA, 2009),
SCA ’09, ACM, pp. 133–138.

[GGL∗98] GLIMM J., GROVE J. W., LI X. L., SHYUE K.-M.,
ZENG Y., ZHANG Q.: Three-dimensional front tracking. SIAM

J. Sci. Comput. 19, 3 (1998), 703–727.

[GSLF05] GUENDELMAN E., SELLE A., LOSASSO F., FEDKIW

R.: Coupling water and smoke to thin deformable and rigid
shells. ACM Trans. Graph. 24 (July 2005), 973–981.

[GSSP10] GOSWAMI P., SCHLEGEL P., SOLENTHALER B., PA-
JAROLA R.: Interactive sph simulation and rendering on the
gpu. In Proceedings of the 2010 ACM SIGGRAPH/Eurographics

Symposium on Computer Animation (Aire-la-Ville, Switzerland,
Switzerland, 2010), SCA ’10, Eurographics Association, pp. 55–
64.

[Har64] HARLOW F. H.: The particle-in-cell computing method
for fluid dynamics. Methods Comput. Phys, 3 (1964), 319–343.

[HHK08] HONG W., HOUSE D. H., KEYSER J.: Adaptive par-
ticles for incompressible fluid simulation. Vis. Comput. 24 (July
2008), 535–543.

[HK10] HEO N., KO H.-S.: Detail-preserving fully-eulerian in-
terface tracking framework. In ACM SIGGRAPH Asia 2010 pa-

pers (New York, NY, USA, 2010), SIGGRAPH ASIA ’10, ACM,
pp. 176:1–176:8.

[HKK07] HARADA T., KOSHIZUKA S., KAWAGUCHI Y.:
Smoothed particle hydrodynamics on gpus. In Computer Graph-

ics International (2007), pp. 63–70.

[HN81] HIRT C. W., NICHOLS B. D.: Volume of fluid vof
method for the dynamics of free boundaries. Journal of Com-

putational Physics 39 (January 1981), 201–225.

[KAG∗05] KEISER R., ADAMS B., GASSER D., BAZZI P.,
DUTRE P., GROSS M.: A unified lagrangian approach to solid-
fluid animation. Proceedings Eurographics/IEEE VGTC Sympo-

sium Point-Based Graphics 0 (2005), 125–148.

[KCC∗06] KIM J., CHA D., CHANG B., KOO B., IHM I.: Practi-
cal animation of turbulent splashing water. In Proceedings of the

2006 ACM SIGGRAPH/Eurographics symposium on Computer

animation (Aire-la-Ville, Switzerland, Switzerland, 2006), SCA
’06, Eurographics Association, pp. 335–344.

[KTO96] KOSHIZUKA S., TAMAKO H., OKA Y.: A particle
method for incompressible viscous flow with fluid fragmentation.
Comput. Fluid Dynamics J. 29(4) (1996).

[KWT88] KASS M., WITKIN A., TERZOPOULOS D.: Snakes:
Active contour models. International journal of computer vision

1, 4 (1988), 321–331.

[LC87] LORENSEN W. E., CLINE H. E.: Marching cubes: A
high resolution 3d surface construction algorithm. SIGGRAPH

Comput. Graph. 21 (August 1987), 163–169.

[LTKF08] LOSASSO F., TALTON J., KWATRA N., FEDKIW R.:
Two-way coupled sph and particle level set fluid simulation.

IEEE Transactions on Visualization and Computer Graphics 14

(July 2008), 797–804.

[M0̈9] MÜLLER M.: Fast and robust tracking of fluid surfaces. In
Proceedings of the 2009 ACM SIGGRAPH/Eurographics Sympo-

sium on Computer Animation (New York, NY, USA, 2009), SCA
’09, ACM, pp. 237–245.

[MCG03] MÜLLER M., CHARYPAR D., GROSS M.: Particle-
based fluid simulation for interactive applications. In Proceed-

ings of the 2003 ACM SIGGRAPH/Eurographics symposium on

Computer animation (Aire-la-Ville, Switzerland, Switzerland,
2003), SCA ’03, Eurographics Association, pp. 154–159.

[MMS07] MIHALEF V., METAXAS D., SUSSMAN M.: Textured
liquids based on the marker level set. Computer Graphics Forum

26, 3 (2007), 457–466.

[OS88] OSHER S., SETHIAN J. A.: Fronts propagating with
curvature-dependent speed: algorithms based on hamilton-jacobi
formulations. J. Comput. Phys. 79, 1 (1988), 12–49.

[PKA∗05] PAULY M., KEISER R., ADAMS B., DUTRÉ P.,
GROSS M., GUIBAS L. J.: Meshless animation of fracturing
solids. ACM Trans. Graph. 24 (July 2005), 957–964.

[PTB∗03] PREMŽOE S., TASDIZEN T., BIGLER J., LEFOHN A.,
WHITAKER R. T.: Particle-based simulation of fluids. Computer

Graphics Forum 22, 3 (2003), 401–410.

[SBH09] SIN F., BARGTEIL A. W., HODGINS J. K.: A point-
based method for animating incompressible flow. In Proceedings

of the 2009 ACM SIGGRAPH/Eurographics Symposium on Com-

puter Animation (New York, NY, USA, 2009), SCA ’09, ACM,
pp. 247–255.

[SP09] SOLENTHALER B., PAJAROLA R.: Predictive-corrective
incompressible sph. ACM Trans. Graph. 28 (July 2009), 40:1–
40:6.

[TBE∗01] TRYGGVASON G., BUNNER B., ESMAEELI A., JU-
RIC D., AL-RAWAHI N., TAUBER W., HAN J., NAS S., JAN

Y.: A front-tracking method for the computations of multiphase
flow. Journal of Computational Physics 169, 2 (2001), 708–759.

[WTGT09] WOJTAN C., THÜREY N., GROSS M., TURK G.:
Deforming meshes that split and merge. In ACM SIGGRAPH

2009 papers (New York, NY, USA, 2009), SIGGRAPH ’09,
ACM, pp. 76:1–76:10.

[WTGT10] WOJTAN C., THÜREY N., GROSS M., TURK G.:
Physics-inspired topology changes for thin fluid features. ACM

Trans. Graph. 29 (July 2010), 50:1–50:8.

[WYS09] WANG Z., YANG J., STERN F.: An improved particle
correction procedure for the particle level set method. J. Comput.

Phys. 228 (September 2009), 5819–5837.

[YT10] YU J., TURK G.: Reconstructing surfaces of particle-
based fluids using anisotropic kernels. In Proceedings of the

2010 ACM SIGGRAPH/Eurographics Symposium on Computer

Animation (Aire-la-Ville, Switzerland, Switzerland, 2010), SCA
’10, Eurographics Association, pp. 217–225.

[YWH∗09] YAN H., WANG Z., HE J., CHEN X., WANG C.,
PENG Q.: Real-time fluid simulation with adaptive sph. Com-

puter Animation and Virtual Worlds 20, 2-3 (2009), 417–426.

[ZB05] ZHU Y., BRIDSON R.: Animating sand as a fluid. ACM

Trans. Graph. 24 (July 2005), 965–972.

c© The Eurographics Association 2011.

