
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. X, NO. X, JANUARY 2012 1

Preserving Fluid Sheets with Adaptively
Sampled Anisotropic Particles

Ryoichi Ando, Nils Thürey, and Reiji Tsuruno

Abstract—This paper presents a particle-based model for preserving fluid sheets of animated liquids with an adaptively sampled

Fluid-Implicit-Particle (FLIP) method. In our method, we preserve fluid sheets by filling the breaking sheets with particle splitting in the

thin regions, and by collapsing them in the deep water. To identify the critically thin parts, we compute the anisotropy of the particle

neighborhoods, and use this information as a resampling criterion to reconstruct thin liquid surfaces. Unlike previous approaches, our

method does not suffer from diffusive surfaces or complex re-meshing operations, and robustly handles topology changes with the

use of a meshless representation. We extend the underlying FLIP model with an anisotropic position correction to improve the particle

spacing, and adaptive sampling to efficiently perform simulations of larger volumes. Due to the Lagrangian nature of our method, it can

be easily implemented and efficiently parallelized. The results show that our method can produce visually complex liquid animations

with thin structures and vivid motions.

Index Terms—physically based modeling, liquid simulation, Fluid-Implicit-Particle method, thin fluid sheets, adaptive sampling.

✦

1 INTRODUCTION

THIN features of liquid are familiar phenomena that
we encounter in our daily life, for example the water

blade of a small waterfall or the water crown induced
by a rain drop. These thin features are important factors
for believable visual representations of fluids. Despite of
the huge amount work in the area of fluid simulation
in computer graphics, thin sheets are still challenging
to track precisely. Typically, the discretization resolu-
tion severely limits the amount of detail that can be
represented. As a result, in Eulerian approaches, such
as levelset based simulations, these sheets are quickly
filtered out due to the numerical diffusion. In Smoothed-
Particle-Hydrodynamics (SPH) simulations, on the other
hand, thin sheets often break up into individual particles.

In the last few years, there has been a growing interest
in simulating liquids with mesh-based surface tracking
methods, e.g., by [1], [2], [3] and [4]. In these methods,
surfaces are modeled with explicit triangle meshes, and
advected through the underlying Eulerian flow. In con-
trast to implicit approaches, these approaches do not
suffer from numerical diffusion, and can capture details
smaller than a grid cell size. However, a drawback of
mesh-based surface tracking methods are the difficul-
ties of handling topology changes; the surface meshes
must be resampled carefully to avoid tangling whenever
topology change events are encountered. The re-meshing

• R. Ando is with Graduate School of Design, Kyushu University, Japan.
E-mail: and@verygood.aid.design.kyushu-u.ac.jp.

• N. Thürey is with ScanlineVFX, Munich, Germany.
E-mail: nils.thuerey@scanlinevfx.com.

• R. Tsuruno is with Faculty of Design, Kyushu University, Japan.
E-mail: tsuruno@design.kyushu-u.ac.jp.

may be done by replacing tangled meshes with Marching
Cube [5] surfaces, or by detecting vertices that are close
to each other and stitching them before the collision
takes place. Due to the intricacy of mesh connectivity,
the sewing algorithms tend to be complex to implement,
and can lead to a loss of detail at the surface.

Since the introduction of the SPH method by Müller
et al. [6] to the field of computer graphics, particle-
based methods have become popular due to their ease
of implementation and their suitability for interactive
applications [7], [8], [9]. These particle-based methods
are feasible for animations of splashes, although the
simulation can suffer from oscillations due to compress-
ibility. Because such oscillations can easily break up thin
structures, these methods are not well-suited for tracking
very thin fluid features. Besides SPH, researchers pro-
posed various Eulerian-Lagrangian hybrid approaches,
such as [10], [11], [12]. These methods are designed
to exploit both the advantages of particles and grids.
However, as they still rely on particles to represent thin
sheets, these can quickly rupture due to the nature of
the Lagrangian representation.

Our simulations are based on the commonly used FLIP
[11] algorithm, which is a hybrid grid-based method that
makes use of particles to represent the liquid volume and
increase the accuracy of the advection. FLIP is capable
of producing incompressible and turbulent fluid motion
that yields interesting and believable visual behavior. We
found this method to be a very suitable basis for com-
puting smooth flow fields that lead to the development
of thin fluid sheets.

The main highlight of our method is a purely mesh-
less particle-based framework that preserves thin fluid
sheets. The thin sheets are preserved by inserting new
particles at sparse thin regions in the sheets. These
particles are removed as they move away from the

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. X, NO. X, JANUARY 2012 2

Fig. 1. Water splash. Left: A splash with newly inserted particles created by our approach highlighted in red. Middle:

The same simulation with a thin surface generated by anisotropic implicit functions. Right: The same simulation frame

without our thin sheet preservation.

visible surface. An example of a thin sheet induced by a
drop of liquid impacting a surface can be seen in Figure
1. Our work makes substantial use of the anisotropic
kernels proposed by Yu and Turk [13]. This algorithm
computes a weighted PCA for neighboring particles to
estimate their stretch and orientation. This information
is used to reconstruct detailed and smooth surfaces. We
additionally use it as criterion to judge whether the
particles are in the bulk volume or whether they are part
of a thin sheet. For particles in a thin sheet we propose
a resampling algorithm that preserves the surface of the
thin sheet and ensures a regular particle spacing while
modifying the dynamics of the simulation as little as
possible.

In the original FLIP method, the distribution of par-
ticles can become unbalanced over time. Such uneven
distributions can be responsible for holes in the fluid,
and unwanted changes in volume. We address this issue
by incrementally adding an anisotropic displacement to
particle positions, to maintain a uniform particle distri-
bution. This process can be interpreted as a weak particle
remeshing step. This has advantages when applying our
algorithm for the adaptive particle resampling. A two-
dimensional example of an adaptive simulation with our
approach can be seen in Figure 2. In addition, we de-
scribe a simple method for handling accurate boundary
conditions with solid walls and free surfaces.

To reduce the computational cost of neighboring parti-
cle lookups, we adaptively replace particles in the deep
water with fewer large ones. This reduces the overall
number of particles and increases the efficiency of our
simulations. At the visible surface, we keep small parti-
cles to allow for a detailed representation of the surface.

2 PREVIOUS WORK

Our work draws upon a broad range of research in fluid
animation, including particle-based liquid animations
and surface tracking methods applied to fluids. In this
section, we briefly review previous works closely related
to our approach.

State-of-the-art surface tracking for liquid can be
categorized into two approaches: implicit and explicit

methods. The level set method proposed by Osher and
Sethian [14] is one of the most popular implicit methods.
In the level set method, each grid node is assigned
a distance function from the closest surface position,
and the surface is implicitly located where the function
is zero. The method has been refined and revised in
many ways. Enright et al. [15], Wang et al. [16], and
Mihalef et al.[17] placed Lagrangian particles to reduce
numerical dissipation. Bargteil et al.[18] updated the
signed distance field from a reconstructed surface mesh
to increase the accuracy. Heo and Ko [19] preserved the
surface detail with a spectrally refined level set (SRL)
and a high-order re-initialization method. These implicit
methods can be utilized to increase the overall detail
with a high resolution grid. However, to the best of our
knowledge, such methods cannot completely prevent the
rupture of thin surfaces. In addition, some researchers
used seeded particles to produce splashes [20], [21], [22]
or fluid sheets [23].

Among the explicit approaches, Hirt and Nichols [24]
proposed a volume-of-fluid method that uses a propor-
tion of the interface for the entire cell. This method is
seldomly employed due to the difficulties of handling a
discontinuous interface. In explicit methods, Lagrangian
approaches are often preferred.

Over the past two decades, a number of mesh-based
surface tracking methods have been proposed through a
variety of research fields, such as medical image analysis
and fluid dynamics [2], [4], [25], [26], [27], [28], [29].
Typically, a mesh-based surface tracker advects explicit
surface elements by the underlying motion; however,
this method can suffer from self-intersection or complex
topology changes. These issues may be resolved by
resampling meshes only where collisions take place. This
strategy tends to make the algorithm complex because
it needs to tolerate numerous complex situations. We
want to emphasize that our method is not related to this
family of surface tracking methods. On the contrary, our
particle-based approach does not hold any connectivity
information. Thus, our method does not suffer from such
complexities.

Particle methods such as the SPH method [6], [30],

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. X, NO. X, JANUARY 2012 3

[31], the Moving Particle Semi-implicit (MPS) method
[32], [33], and the meshless physical simulations [34],
[35], [36] are usually used not only to simulate en-
tire physical motion, but also to reconstruct surfaces.
Blinn[37], Zhu and Bridson[11], Adams et al.[38], and Yu
and Turk [13] proposed a novel surface reconstruction
algorithm from a point cloud. In their method, surfaces
are implicitly defined with respect to the distance from
particles. However, these methods exhibit poor, blobby
ruptures where the particles are sparse. In our particle-
based method, we employ the method of Yu and Turk
[13] to reconstruct surfaces after filling ruptures with
extra particles so that the sheets are preserved. As an
underlying fluid solver, we use a modified version of
the hybrid grid and particle based approach proposed
in [11].

The adaptive resampling phase in our algorithm for
deep water volumes is considered to be a variation of
adaptive particle-based methods, such as [38], [39], [40],
[9], in which the particles are resampled using different
sizes to reduce the computational cost while retaining
visual detail. On the other hand, in our model for
thin sheet preservation, we specifically focus on keeping
the continuous fluid sheets instead of increasing the
efficiency.

The combination of the SPH and FLIP methods was
recently demonstrated by Raveendran et al.[41]. The
goal of their approach is to transfer the pressure values
enforced on a grid onto the particles to predict the initial
guess of SPH pressures. In contrast, we weakly displace
particles to keep uniform particle distances. Both meth-
ods share the notion of pressure based forces, but we
specifically use weak kernels, and base our simulations
on an extended FLIP solver.

3 MODIFIED FLIP SOLVER

This section describes an underlying liquid solver which
we used to generate smooth liquid motion for pre-
serving thin surfaces. Our solver is a modified version
of the Particle-in-Cell/Fluid-Implicit-Particle (PIC/FLIP)
method [11], which is an Eulerian-Lagrangian hybrid
approach in which a liquid domain is discretized with a
collection of particles. We describe the workflow in detail
in the following subsections.

3.1 Interpolation

In contrast to the standard FLIP method, we make use
of SPH-like interpolation kernels to interpolate particle
based properties, such as velocities. We use this interpo-
lation both for the underlying simulation as well as for
our thin sheet preservation algorithm later on. Given a
particle distribution, the fluid velocity u and the particle
density ρ at location x are computed as

u(x) =

∑

i miuiWsharp(pi − x, αudi)
∑

i miWsharp(pi − x, αudi)
(1)

ρ(x) =
∑

i

miWsmooth(pi − x, αρdi), (2)

Fig. 2. Two-dimensional dam break. Left: Our liquid

simulator. Right: A normal PIC/FLIP simulation. Notice

that in our image particles are adaptively sampled in the

deep water, and the spatial particle distribution is almost

uniform while the PIC/FLIP image is uneven.

where di, pi, ui and mi denote the particle radius,
the position, the velocity and the mass of a particle
i, respectively. αu and αρ are the scaling constants for
radius di. We used αu = 1.0 and αρ = 4.0. For weighting
kernels we use two simple kernels:

Wsharp(r, h) =

{

h2/||r||2 − 1 0 ≤ ||r|| ≤ h
0 otherwise,

(3)

Wsmooth(r, h) =

{

1− ||r||2/h2 0 ≤ ||r|| ≤ h
0 otherwise.

(4)

Our sharp kernel Wsharp(r, h) is designed to resam-
ple a quantity of the particle such that u(pi) = ui,
while Wsmooth(r, h) is used to compute the average
of a quantity from nearby particles. Any kernels, e.g.
those commonly used for SPH simulations, with similar
properties would be applicable here. To accelerate the
neighborhood lookup, we bin the particles into the grid
before computing each step of the simulation. If the
denominator of Equation 1 is close to zero, we use the
velocity of the closest particle to prevent roundoff errors.
For each grid cell, we additionally compute a level set
function to locate the position of the free surface:

φL(x) = αLN0ρ0 −
∑

i

ρ(pi), (5)

where i and ρ0 denote the particle index within a cell
and the initial maximum density at the beginning of the
simulation. αL is a parameter to distinguish incompress-
ible liquid volumes and splashing particles, while N0

denotes the initial number of particles placed in a cell.
The liquid domain consists of all cells with φL(x) ≤ 0.
We consistently use αL = 0.2 and N0 = 8 in our three-
dimensional simulations. Note that this implicit function
is not used for reconstructing thin surfaces. We describe
another implicit function to this end in Section 5.3.

The purpose of the implicit functions from Equation 5
is to avoid cells being erroneously flagged as liquid in
areas where particles are sparse, such as liquid sheets or
gaps in the liquid domain. This prevents liquid particles
from floating on the free surfaces, and avoids unwanted
volume increase.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. X, NO. X, JANUARY 2012 4

3.2 Grid-based Solving

In the first step of our simulation, the velocity of the
advected particles is mapped onto a staggered Marker-
And-Cell (MAC) grid. The velocity is made divergence
free by solving the standard Poisson equation on the
grid. In PIC [42], the projected grid velocity is mapped
to the particles to yield an incompressible particle flow.
In our implementation, we use Equation 1 to map the
velocity from the particles to the grid similarly to [43],
[39], [40]. Although grid-based interpolation, e.g., as
in [11], could be used here, we prefer the use of an
SPH-like interpolation since we can consistently use this
approach for interpolating arbitrary physical quantities
as well as for our position-based correction algorithm
from Section 5.2. To map velocity from the grid to the
particles, we perform a tri-linear interpolation.

PIC naturally carries the momentum using the parti-
cles, instead of performing a grid-based advection step.
However, PIC is known to create numerical diffusion
due to the successive back-and-forth interpolation of
velocities. For this reason, FLIP was introduced by [44].
In FLIP, only the change of the grid velocity from the
previous time step to the current one is mapped back
to the particles. This delta is added to the velocities of
the particles to obtain the new particle velocity for the
following time step.

The particles are then moved using the velocity field
on the grid. Unlike PIC, FLIP does not suffer from
numerical dissipation. However, FLIP can suffer from
noisy behavior due to a complete lack of viscosity in
the simulation. As in [11], we alleviate this problem by
linearly blending the PIC and FLIP velocities with a
scalar parameter αν as follows:

u = PIC/FLIP(u∗) = αν FLIP(u∗)+(1−αν)PIC(u∗). (6)

where u∗ and u denote the velocity of particles after
advection and the new particle velocity, respectively.
Note that αν effectively controls the viscosity of the sim-
ulation, and is typically close to 1. In our implementation
we have used αν = 0.95.

3.3 Boundary Conditions

A regular, voxelized pressure solver on a cartesian MAC
grid cell can be responsible for stair-casing artifacts at
the free surface and particles getting stuck on curved
solid walls. This problem is well recognized among
researchers, and several approaches exist to prevent
this [45], [46]. In the level set community, the ghost
fluid method [47] is commonly used for second-order
accurate free surface boundary conditions. Let p(xi) be a
pressure at cell i underneath a liquid surface, and pG(xj)
an adjacent ghost pressure at cell j outside the liquid
volume. We use Equation 5 to compute the correct ghost
pressure value as:

pG(xj) =
φL(xj)

φL(xi)
p(xi) (7)

Fig. 3. Smooth surface. Left: Surfaces with accurate

free surface boundary conditions. Right: Surfaces with

voxelized free surface boundary conditions. Notice that in

the left image, wrinkle artifacts are less visible.

The effect of the free surface boundary condition is
illustrated in Figure 3. As seen from the figure, ghost
pressures on the surfaces act to flatten the jagged ripples.
For curved solid walls, we used the variational frame-
work introduced by Batty et al. [48] to accurately handle
smooth obstacle surfaces. To summarize, our simulations
use a FLIP based fluid solver with custom interpolation
kernels and second order boundary conditions for the
free surface and obstacles. The pseudocode code of our
modified solver is shown in Algorithm 1. Here, I denotes
the tri-linear interpolation from the grid based velocity
g to the particles.

Algorithm 1 MODIFIED FLIP SOLVER

1: u∗ = Advect particles with gt

2: g∗ = Interpolate u∗ using Eq. 1
3: gt+1 = Project(g∗, φL)
4: ut+1 = αν [u∗ + I(gt+1 − g∗)] + (1− αν)I(gt+1)

4 PRESERVING SHEETS

The main highlight of our method is an algorithm to
preserve thin sheets by inserting extra particles where
the surface might break up. Figure 4 illustrates an
overview of our procedure. First, we extract thin fluid
regions. Within those regions, new candidate positions
for particles are computed and new particles are care-
fully inserted to avoid collisions. We describe these steps
in more detail in the following subsections.

4.1 Thin Particle Extraction

We extract so-called thin particles (Figure 4b), which
form thin regions that could potentially break up, by
examining the stretch of the distributions of neighboring
particles. To do this, we employ the anisotropic ker-
nel method of [13]. For each particle, we compute a
weighted average covariance of particles C as follows:

Ci =

∑

j(pj − pi)(pj − pi)
T Wsmooth(pj − pi, αρd0)

∑

j Wsmooth(pj − pi, αρd0)
, (8)

where

pi =

∑

j pjWsmooth(pj − pi, αρd0)
∑

j Wsmooth(pj − pi, αρd0)
. (9)

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. X, NO. X, JANUARY 2012 5

(a) Input Simulation (b) Thin Sheet Area Detection (c) Candidate Position Detection (d) Particle Insertion

Fig. 4. Algorithmic overview. (a) Given an input collection of particles, (b) we compute particles in thin regions. To fill

in breaking sheets, (c) we compute the candidate positions for insertion and (d) we insert the particles with a suitable

spacing.

The Singular Value Decomposition (SVD) of the associ-
ated Ci yields the direction and the stretch of neighbor-
ing particle positions as eigenvectors and eigenvalues,
as follows:

Ci = R

σ1

σ2

σ3

RT (10)

where R and σn denote the eigenvector matrix and the
eigenvalues in order of descending magnitude (σ1 >
σ2 > σ3). The eigenvalues indicate the degree of stretch.
Note that the SVD is applied only where the particle
density falls below a chosen threshold ρ(pi) < α∂Ωρ0;
otherwise, we skip the SVD, and use diag(σ1, σ2, σ3) = I

instead. Since the SVD is only computed near the liquid
surface, this can be done very efficiently. The thin parti-
cles are identified by:

σ3 ≤ βthinσ1, (11)

where βthin denotes a threshold that determines the
degree of thinness. In our implementation we used
βthin = 0.2, and α∂Ω = 0.7. These thin particles are
used to compute where new particles are inserted in the
following steps.

4.2 Finding the Candidate Positions

Within the extracted thin particles, we search for pairs
(pi,pj) that bridge breaking holes in the fluid volume. A
midpoint of the pair (pi+pj)/2 is recorded as a candidate
position for insertion (Figure 4c). In our method we
choose pairs (pi,pj) that satisfy all of the following
conditions:

βmind0 ≤ ||pj − pi|| ≤ βmaxd0

∑

k Wsmooth((pi + pj)/2− pk, βmind0) = 0

(pj − pi) · (uj − ui) > 0

(12)

where βmin and βmax denote constants that control the
minimum and maximum space of candidate positions,
respectively. In the first row of Equation 12, we check
whether the two particles lie at a moderate distance from
each other. Here, we use βmin = 0.8 and βmax = 3.5.

In the second row, we check whether the candidate
midpoint is sparse enough to contain a new particle at
radius βmind0. Note that at this time, scarcity is only
checked among existing particles. Finally, the third row
checks whether the pair has opposing velocities. This
means that the distance between the pair of particles
is currently increasing. Once these pairs are found, we
store the midpoints in a list S. We illustrate an example
of candidate positions with and without thin particle
detection in Figure 5.

4.3 Particle Insertion and Removal

The candidate positions cannot be used naively because
they are usually very dense. To prevent the creation of
unnecessarily large amounts of particles, we describe a
simple algorithm to insert candidates with a suitable
sparseness. Let I be the final list of candidates positions.
The first entry I1 is the most sparse candidate within S,
given by the lowest density:

I1 = arg min
j∈S

ρ(pj). (13)

Once I1 is found, we remove candidates near pI1
from

S that exists within radius βmind0. In the second step we
search for particles in the neighborhood of pI1

in S. Let
NI1

denote the set of particles within radius βmaxd0 of
pI1

. Now we insert the closest candidate from NI1
into

I . This candidate position is computed with

I2 = arg min
j∈NI1

||pj − pI1
||. (14)

We can formulate this search recursively as In+1 =
search(In). If the next search fails, meaning that no
particle exists in the neighborhood of the previously
inserted one, Equation 13 is used instead. Figure 6 shows
an example of our insertion procedure. In this example,
the candidate positions are computed with the desired
spacing.

When inserting new particles at the candidate posi-
tions, every attribute is linearly interpolated from the
source pair except for the mass. In the case of splitting
a pair (pi,pj), the mass of the new particle is given by
m = (mi + mj)/3. After the split, the masses of particles
i and j are reduced to mnew

i = 2

3
mi,m

new
j = 2

3
mj .

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. X, NO. X, JANUARY 2012 6

Fig. 5. 2D thin particle clipping. Left: Simulation input.

Right: Both the slashed and the open particles satisfy Eq.

12. Only the slashed particles also satisfy Eq. 11.

This is necessary to evenly distribute mass among the
newly created particles for interpolation with Equations
1 and 2. Note that in our model the mass is only used
as an interpolation weight for physical quantities. The
particles themselves move like massless markers when
they are advected through the velocity grid. It should
also be noted that adaptively merged particles, which
are introduced in Section 5.1, are not split to avoid
unnecessary complexity.

In contrast, an inserted particle pi is removed again
once it satisfies at least one of the two following condi-
tions

any

ρ(pi) > βmaxρρ0 and σ3 ≥ βthinσ1

for any particle j ||pi − pj || < βdistd0

(15)

where βmaxρ and βdist denote the maximum density
coefficient and the minimum space, respectively. For our
simulations we used βmaxρ = 0.2, βdist = 0.2. Note
that the algorithm so far can introduce flickering once
a newly inserted particle is removed in the subsequent
time step. To prevent this, we do not remove particles
unless they have existed for a minimal number of three
successive time steps. When removing a particle, its mass
is simply returned to the source pair that was used to
generate it. Note that this redistribution of mass can lead
to sudden non-local change in momentum near the re-
moved particle and the original two particles. However,
we found that this effect is only temporary and is almost
unnoticeable. When splitting particles more than once,
we track the hierarchy of these parent particles so that
their mass can be fully restored.

The pseudo code for our thin sheet preservation is
shown in Algorithm 2.

5 SOLVER EXTENSIONS

In the following subsections, we describe three exten-
sions to the simulation algorithm discussed so far. These
include adaptivity, to reduce the overall number of
particles in the simulation, and an anisotropic position
correction for even particle distribution.

5.1 Adaptively Sampled Particles

In the FLIP method, the number of liquid particles
directly affects the quality of the generated surfaces.
Usually, eight particles are initially placed in one sim-
ulation grid cell. As the FLIP method cannot capture

1

(a) Candidate Particles (b) Inserted Particles

2 3 4 5 6
7

8

Fig. 6. 3D particle insertion (sheet viewed from the
top). (a): Suggested candidate particles. (b): Actually

inserted particles and insertion conducted in serial order

by the numbers shown. A black contour indicates the

particle radius.

Algorithm 2 PRESERVE THIN FLUID SHEETS

1: C ← Compute Covariance Around p by Eq. 8
2: RΣRT ← SVD(C)
3: P ← Extract Thin Sheet Particles(Σ) by Eq. 11
4: for all (i, j) ∈ P do
5: if a pair (pi,pj) satisfies Eq. 12 then
6: S ← Insert New Candidate (pi + pj)/2
7: end if
8: end for
9: I1 ← by Eq. 13 in S

10: for n = 2, 3, 4, · · · do
11: In ← search(In−1) in S as Eq. 14
12: end for
13: Insert New Particles I
14: Collapse Particles that Satisfy Eq. 15

fluid motion smaller than a single grid cell, we can save
large amounts of computational resources by adaptively
resampling the bulk volume of the flow with fewer
particles while preserving a dense particle sampling
near the visible surfaces. This way we can focus the
computations on the visible surface detail, and keep the
high particle density there, while reducing the number of
particles used to sample the bulk volume. Our adaptive
sampling model is inspired by the methods of Adams et
al. [38] and Hong et al [39], [40], which we have adapted
for integration into the FLIP simulation framework. The
changes to the previous methods are twofold. First,
rather than placing multiple layers and judging particle
split by Reynolds number as in [39], [40], we only
check whether particles exist close to the free surface
for merging and splitting particles. Second, because the
FLIP simulation is stable regardless of the space between
particles, we simply place particles at random positions
without finding nearby free space as done by [38]. In
addition, we describe a new simple method to merge
particles that can be performed in parallel.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. X, NO. X, JANUARY 2012 7

5.1.1 Particle Merge

In the following, we will divide the simulation region
into surface cells, which are all cells close to the liquid
interface, and deep cells, which are all remaining ones
inside the fluid volume. The surface cells can be easliy
found by dilating the air cells a few times. In our
model, initial densely placed particles are called ”small”
particles, and the sparse particles in the bulk volume are
labeled as ”big” particles. The big particles are generated
by merging small particles, up to a certain maximal
number. For every particle that exists in the deep water
cells, we merge particles based on the following rules:

1) Find particle pairs that are close enough to one
another. Typically, closer than the particle radius.

2) If the pair consists of one or two big particles, we
compute the sum of all contained small particles.
If the number exceeds limited tolerance m, we skip
merging for this pair.

3) Otherwise, we generate a big particle from the pair.
The radius of this particle is modified such that

dn = n
1

D d0, (16)

where dn denotes a big particle radius that con-
tains n small particles, while d0 is the particle
radius of the initial small particles. D denotes the
simulation dimension (D=2 in 2D and 3 in 3D).
In our experiments, we found it best to set the
maximum number m such that the radius of the
biggest particle is the size of simulation grid cell:

m = (
∆x

d0

)D (17)

4) The new big particle is placed at the midpoint of
the existing pair. Its mass is updated to be the
sum of the masses of all contained small particles.
The other physical quantities such as velocity are
interpolated based on their mass.

We repeat this process until no particles are left to
be merged. Because we merge particles in parallel, we
need to avoid the duplication of particles in multiple
pairs. To ensure this, we only consider pairs between
the two closest neighboring particles. If a pair references
a particle that is not the closest neighbor, we skip it. This
process is illustrated in Figure 8.

5.1.2 Particle Split

When big particles enter surface cells, the merging has
to be undone. We split the big particle into the correct
number of small particles, which are placed around the
source particle at random positions within radius dn.
The mass of the big particle is evenly distributed among
the newly created small particles, and their radii are
initialized accordingly. All the other physical quantities
are copied.

Such a particle split could cause sudden large spring
force in a regular SPH simulation. However, as the
regular FLIP algorithm does not apply forces based on

Fig. 7. Adaptive sampling cutaway view. Top: Initial

placement of particles. Bottom: Simulated particles with

described adaptive sampling.

Fig. 8. Particle merging. Left: Particle pairs which

are closer than the particle radius. Middle: Pairs which

references the closest two neighboring particles. Right:

After the parallel merging. We repeat these steps until no

particles are left to be merged.

the particle density this is unproblematic. In the next
section, we describe an incremental particle displace-
ment technique to ensure even spacing of the particles.
A particle split influences the generated force, but due to
its small magnitude we did not observe any instabilities
due to the particle splitting.

5.1.3 Algorithm

Each step of the merging and splitting processes can be
done in parallel. Splitting operations can be performed
very efficiently since no neighborhood information is
required. In our implementation we insert a layer of
cells between the surface and the deep fluid layers where
no conversions between small and big particles are per-
formed. This prevents excessive merging and splitting
operations that could otherwise happen at the interface
between deep and surface cells.

We found that adaptively merging particles can ef-
fectively reduce the overall number of particles in the
simulation, and significantly improves the overall per-
formance. Merging particles in this way can influence the
velocities computed during the FLIP simulation for the

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. X, NO. X, JANUARY 2012 8

Algorithm 3 ADAPTIVELY SAMPLE PARTICLES

1: DeepCells ← FluidCells − dilate(EmptyCells,twice)
2: SurfaceCells ← FluidCells − dilate(DeepCells,once)
3: repeat
4: for all particles (pi,pj) ∈ DeepCells do
5: skip if ||pi − pj || > (di + dj)/2
6: skip if arg mink ||pi − pk|| 6= j
7: skip if arg mink ||pj − pk|| 6= i
8: n← Sum of small particles.
9: skip if n > m

10: pk ← Generate a new particle.
11: dk ← n

1

D d0

12: Remove the particles pi, pj

13: end for
14: until no particles merge
15: for all merged particle pk ∈ SurfaceCells do
16: for i = 1→ number of particles in pk do
17: pi ← Generate a new particles at random

position around pk within radius dk.
18: di ← d0

19: end for
20: Remove particle pk

21: end for

deep cells. However, we have found that this influence is
negligible, and barely changes the position of the visible
surface. We will demonstrate the improved performance
and the effect of the adaptive resampling in the results
section below. The effect of the adaptive particle sam-
pling can be seen, e.g., in Figure 2 and Figure 7. The
pseudo code for our adaptive sampling algorithm is
shown in Algorithm 3.

5.2 Anisotropic Position Correction

An inherent problem of PIC and FLIP is that both meth-
ods can lead to uneven spatial particle distributions over
time, which in turn can cause ”holes” due to missed fluid
cells, bumpy surfaces and unreliable adaptive sampling.
To prevent this, we slightly move particles along the
direction of an SPH-like pressure force, and resample
the particle velocities.

If we neglect the current particle distribution, an
isotropic version of a position displacement vector ∆p

could be computed as follows:

∆pi = −∆tγsdi

∑

j

pj − pi

||pj − pi||
Wsmooth(pj − pi, di), (18)

where γs denotes the stiffness of the displacement. We
have used γs = 50. The particle positions are slightly
moved to pnew = p + ∆p. Next, we recompute the
velocity of the particles which is defined by Equation 1
and the positions and velocities u before applying the
displacement. A new particle velocity is computed such
that unew = u(pnew) to keep this physical quantity over
the domain consistent during the displacement. Note
that the mass of a particle is neglected when applying

Fig. 9. Effect of the anisotropic position correction.

2D comparison of the isotropic (left) and anisotropic

displacement correction (right). The anisotropic displace-

ment correction avoids a thickening of thin sheets, and

keeps the sharp front intact.

the displacement, since it works purely as a position
correction.

This isotropic version of the displacement was used
in Ando and Tsuruno’s work [49], but the method can
lead to a thickening of thin surfaces, or a smearing
out of sharp features. We can alleviate this issue as we
have the particle stretch information from the SVD ready
from previous steps, and we can take this information
into account when applying the position correction. We
propose to use the following anisotropic version of the
position displacement vector:

∆pi = −∆tγsdi

∑

j

ri,j

||ri,j ||
Wsmooth(ri,j , di) (19)

ri,j =
1

ks

C−1
i (pj − pi) (20)

where ks denotes a scaling constant such that ||ksCi|| ≈
1. As before, we constrain the eigenvectors of the
anisotropy matrix to lie within a certain range. For the
displacement correction we have used 0 < σn < 1/ks.
Equation 19 can be symmetrized as:

∆pi = −∆tγsd
∑

j

r

||r||
Wsmooth(r, d) (21)

r =
1

2ks

(C−1
i + C−1

j)(pj − pi), d =
1

2
(di + dj). (22)

In this paper we applied this anisotropic displacement
vector to maintain a uniform particle distributions. A
two-dimensional comparison is shown in Figure 9.

We apply a very weak position displacement and
the resampling of velocity to prevent any noticeable
disturbances of the simulation. As FLIP simulations tend
to slowly lead to uneven particle distributions over
time, our method gradually counteracts this problem.
An advantage of our approach in comparison to SPH
simulations is that it allows us to take large time steps,
which could lead to stability problems in SPH. It should
be taken into account that the re-computation of the
new particle velocities introduces a certain amount of
additional diffusion. This can be prevented by changing
the viscosity αν of the FLIP simulation accordingly. In
addition, we found this slightly more viscous behavior
to be appropriate for generating liquid animations with

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. X, NO. X, JANUARY 2012 9

Fig. 10. Effect of our incremental position correction.
Top: uniformly placed particles. Bottom: same particle

placement with corrective position displacement applied.

Left column: normal simulation. Right column: simulation

with our thin sheet preservation.

thin features. Algorithm 4 shows the pseudo code for
our anisotropic position correction computation.

Algorithm 4 ANISOTROPIC POSITION CORRECTION

1: for all i ∈ P do
2: ∆pi ← Eq. 21
3: pnew

i = pi + ∆pi

4: unew
i = u(pnew

i) using Eq. 1
5: end for

Figure 10 shows a three-dimensional comparison with
and without the position correction. Without the cor-
rection, the particle distribution can develops unevenly.
In this scenario, initially randomized particles [11] may
alleviate the issue, but this technique works only at the
beginning of the simulation; eventually, the distribution
will become uneven. In contrast, our method is capable
of also fixing this issue during the course of a longer
simulation.

As can be seen on the right side of Figure 10, the
particle position correction also improves the results of
our sheet preservation algorithm. Without the correction,
our algorithms is frequently triggered to fill the gaps,
but can fail to find a suitable position for newly created
particles. In the worst case, this can lead to a sheet
breaking unevenly. In combination with the anisotropic
position correction, the thin sheet preservation produces
the desired result, as can be seen in the bottom-right
image of Figure 10.

5.3 Surface Reconstruction

We reuse the SVD information of Equation 10 for evalu-
ating anisotropic kernels for the surface reconstruction,
as proposed in [13]. For the simulations of this paper we
employed a simple implicit function:

φS(x) = min
i

(||C−1
i (pi − x)||), (23)

We compute a triangulation of the surface using the
Marching Cube algorithm [5]. To make sure all thin

Fig. 11. Water drop on cubic tower. Top row: liquid

solver only. Bottom row: the same simulation with our

sheet preserving algorithm. The left hand side visualizes

the particles, while the right hand side shows the trans-

parently rendered mesh.

sheets were captured, we set the minimal eigenvalue
of Ci be to on the order of a single cell. In addition,
we applied a straightforward mesh-based smoothing to
reduce any remaining bumps in the resulting surface.

6 RESULTS

All of the following simulation results were run on a
Core i7 860 2.8 GHz PC using a resolution of 1003, except
for the simulation shown in Figure 19 and 18, which was
simulated at 1503 on a Core i7-2600k 3.4 GHz PC. Every
liquid solver step is done in a parallel manner. This
includes mapping between the grid and a particle, the
adaptive sampling, solving for pressure, and applying
the anisotropic position correction. The thin feature pre-
serving algorithm is also parallelized, except for particle
insertion and collapse. In our implementation we gained
significant acceleration by employing OpenMP direc-
tives. The cost of computing the list of neighbors was less
than 0.5% of the simulation time, so we reconstruct the
list of neighbors whenever it is necessary. The simulation
itself requires between 5 and 40 seconds per time step for
the 1003 examples shown here. For the time step size, we
chose ∆t = 0.6×10−2. The surface mesh creation took up
to 4 seconds for a resolution of 2003 and the renderings
with transparency took approximately two minutes per
frame. Transparent renderings were done with the Pixie
and Yafaray renderers, while we performed the point
and opaque renderings using PBRT.

Figure 11 shows an example of a water drop hitting
a cubic tower, resulting in a thin sheet expanding in a
circular manner. Without our thin sheet preservation,
the liquid sheet quickly ruptures as it expands. With

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. X, NO. X, JANUARY 2012 10

Fig. 12. Thin sheet at ledge. Top: Liquid is poured onto

an obstacle and flows over the ledge, forming a thin sheet

and hitting the pool below. Bottom: Particle cutaway view.

our approach, we successfully maintain a continuous
liquid sheet. Our algorithm successfully identifies the
regions where the sheet would break up, and inserts new
particles in the appropriate regions.

Figure 12 shows an example of water being poured
onto an obstacle, and forming a thin sheet while flowing
off the ledge. Notice that the stream of liquid flowing
down hits the pool without rupturing. Each time step
took approximately 5 to 40 seconds to compute. The
number of liquid particles was 400k at the frame shown
in Figure 12. Note that although we limit the number
times that a particle can split, we could not completely
drain the liquid on the box for this example, and a thin
layer of liquid remained on top of the box. If necessary,
the particles on top could be identified and removed as
in [49] However, we deliberately choose not to do this
in order to avoid prevent the introduction of potential
visual artifacts.

Figure 13 shows a simulation of a water drop hitting
a pool of liquid, comparing a simulation with and one
without our sheet preserving algorithm. With our al-
gorithm, we are able to successfully capture the splash
around the drop without unwanted holes in the liquid
sheet. On the other hand, in the bottom image, the
sheet of liquid dissolves into individual particles. For

Fig. 13. Water drop in a container. Top: With our

sheet preserving algorithm. Bottom: Without the sheet

preserving algorithm. Notice that without our our method

the thin sheets can easily rupture.

this simulation, a single time step took 20 seconds, and
400k particles were used on average.

To demonstrate that the adaptive sampling does not
introduce simulation artifacts, a comparison between a
simulation using this approach, and a regular one can be
seen in Figure 18. We observed that adaptively sampled
particles tend to lose some of the active motions of
the surfaces, resulting in a slightly faster settling of the
liquid. This is most likely caused by the adaptive particle
splitting and merging processes, which leads to an extra
diffusion of the fluid velocity. We plan to evaluate more
accurate particle-based interpolation schemes (e.g. radial
basis functions) to alleviate this issue as future work.

A test case often used for evaluating surface tracking
algorithms is the Enright deformation test [50]. In this
test, a solid sphere is deformed according to an artificial
flow field, which is then reversed to restore the sphere
to its original shape. Figure 17 shows how our approach
performs for this problem. The thin sheet, which can
quickly break up using traditional level set methods,
is well preserved due to the extra particle insertion,
shown in pink. These particles are then removed as the
deformation returns the sphere to its original form.

Timings for each step of our fluid solver during the
course of a simulation are shown in Figure 16. The
most time-consuming part of our simulator changes
depending on the situation. When the simulation con-
tains large amounts of thin regions, the sheet preserving
algorithm can consume most of the simulation time.
However, on average, the FLIP solver was the most
time consuming part. The two left-most graphs, a and
b, compare the performance of a simulation using our
adaptive particle re-sampling strategy, and one without.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. X, NO. X, JANUARY 2012 11

Fig. 14. Comparison with SPH. The left image shows

a FLIP based solver, while the right one shows an SPH

based simulation. Both use our thin sheet preservation.

Notice that the SPH simulation fails to accurately resolve

and preserve the thin sheets.

Name Description Value
αu Velocity radius scale 1.0
αρ Density radius scale 4.0
αL Liquid levelset rate 0.2
αν FLIP viscosity 0.95
α∂Ω Surface particle density rate 0.7
βthin Thin sheets rate 0.2
βmin Insertion minimum distance 0.8
βmax Insertion maximum distance 3.5
βmaxρ Thin particle maximum density 0.2
βdist Thin particle minimum distance 0.2
γs Displacement stiffness 50
∆t Time step size 0.6× 10−2

N0 Number of particles in a cell 8

Fig. 15. Parameters. We used these specific parameters

to generate example animations shown in this paper.

The position correction and the density computation
steps require particle neighborhoods, and thus can take
significant amounts of time to compute, as can be seen
in Figure 16b. However, thanks to the overall reduction
of the number particles with adaptive sampling, we
can minimize this cost considerably, as can be seen in
Figure 16c.

7 DISCUSSION

As our method is based on particles, it can also be ap-
plied to SPH simulations. Figure 14 shows a comparison
of SPH and our FLIP-based fluid solver coupled with
our sheet preserving algorithm. Although the method
works in principle, we found the SPH simulations to
have particle motions that were too violent to accurately
resolve sheets with our approach.

As can be seen from the figure, the splashy behavior
of the SPH makes it hard to detect unique thin fluid
features to be preserved. Note that we did not employ
surface tension forces in the SPH simulation, which
could be used to force the liquid into temporally more
coherent structures.

Our position correction algorithm can be considered as
a kind of re-meshing process, and thus must be applied
to positions. If were to apply the correction directly to the

velocities as a force this could easily lead to unrealistic
behavior, since such forces do not exist in the governing
physics.

Our algorithm has several parameters. So far, we have
introduced 13 user-adjustable parameters αu ∼ γs, N0

and ∆t, but more are possible in an actual implemen-
tation. In detail, our fluid simulator has 8 parameters
and the sheet preserving algorithm has 5 parameters.
Fortunately, we found that these parameters are not
sensitive in terms of stability, and we were able to use
constant values for all of them for the simulations shown
in this work. ∆t can be heuristically changed but it does
not have to be overly small to keep the simulation stable.
We show a list of the parameters that were used in
Table 15.

With adaptive sampling, our thin sheet preservation
sometimes finds small ”gaps” between small particles
and merged particles. This is because our sheet pre-
serving algorithm ”misinterprets” thin layers of small
particles as a thin sheet, and tries to fill holes between
the surface particles and the particles in the bulk volume.
This problem could be fixed by a more thorough check
of the particle types, but we did not observe any side
effects due to this misinterpretation.

There are some specific types of shapes that our al-
gorithm does not handle well. For instance, our method
can have problems with separating ”T-junctions” or ”V”
shaped fluid sheets. For these shapes, the SVD interprets
the articulated joints as a thick area, and prevents parti-
cle splitting there. We believe this issue can be alleviated
by propagating ”thin particles” labels among particles.

Note that in some cases the fluid sheet seems to ex-
pand without limit as it stretches, but eventually breaks
into individual drops because we skip splitting when
the density is too low. Moreover, the anisotropic kernels
could also be used to search nearby particles when
splitting particles in our sheet preserving algorithm. An
anisotropic splitting could fill ruptures more robustly
than our isotropic method does. We plan to investigate
the effects of such a modification in more detail in the
future.

For our adaptive sampling approach, the largest size
of a merged particle is currently limited by the size of the
grid cell. It would be possible to allow particles to grow
to larger sizes. However, because the underlying grid
is uniform, we cannot fully benefit from the sampled
particles when running the actual FLIP solver. As future
work, we would like to also adaptively re-mesh the
Eulerian grid in accordance with the particles in order to
fully benefit from the adaptivity, as was done by Hong
et al. [40] and Sin et al. [10].

Also note that although we applied our algorithm only
to liquids in this work, it would also be applicable to
particle based representations of other phenomena, for
example viscoelastic materials or wispy smoke, which
we leave as future work.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. X, NO. X, JANUARY 2012 12

8 CONCLUSION

In this paper we have demonstrated a particle-based
algorithm that preserves thin fluid sheets by carefully
re-sampling particles. As an underlying fluid solver, we
employed the FLIP method extended with an incre-
mental anisotropic position correction to ensure even
particle distribution. To reduce the cost of neighborhood
computations, we adaptively sampled particles in the
deep water while retaining dense particles near surfaces.
To prevent fluid sheets from breaking, we identified thin
fluid regions by computing the stretch of the neighboring
particle distributions. Within the critical regions, new
particles were carefully introduced to avoid disturbing
the underlying flow when filling sparsely sampled areas.
We have shown a variety of different simulations to
demonstrate that our approach can efficiently handle a
variety of liquid phenomena with thin features.

ACKNOWLEDGEMENTS

This work was supported by the Japan Society for the
Promotion of Science (JSPS) and the Grants-in-Aid for
Scientific Research (23611021).

REFERENCES

[1] C. Wojtan and G. Turk, “Fast viscoelastic behavior with thin
features,” ACM Trans. Graph., vol. 27, no. 3, pp. 1–8, 2008.

[2] M. Müller, “Fast and robust tracking of fluid surfaces,” in Pro-
ceedings of the 2009 ACM SIGGRAPH/Eurographics Symposium on
Computer Animation, ser. SCA ’09. ACM, 2009, pp. 237–245.

[3] T. Brochu, C. Batty, and R. Bridson, “Matching fluid simulation
elements to surface geometry and topology,” ACM Trans. Graph.,
vol. 29, pp. 47:1–47:9, July 2010.

[4] C. Wojtan, N. Thürey, M. Gross, and G. Turk, “Physics-inspired
topology changes for thin fluid features,” ACM Trans. Graph.,
vol. 29, pp. 50:1–50:8, July 2010.

[5] W. E. Lorensen and H. E. Cline, “Marching cubes: A high res-
olution 3d surface construction algorithm,” SIGGRAPH Comput.
Graph., vol. 21, pp. 163–169, August 1987.

[6] M. Müller, D. Charypar, and M. Gross, “Particle-based fluid
simulation for interactive applications,” in Proceedings of the 2003
ACM SIGGRAPH/Eurographics symposium on Computer animation,
ser. SCA ’03. Eurographics Association, 2003, pp. 154–159.

[7] P. Goswami, P. Schlegel, B. Solenthaler, and R. Pajarola, “Inter-
active sph simulation and rendering on the gpu,” in Proceedings
of the 2010 ACM SIGGRAPH/Eurographics Symposium on Computer
Animation, ser. SCA ’10. Eurographics Association, 2010, pp. 55–
64.

[8] T. Harada, S. Koshizuka, and Y. Kawaguchi, “Smoothed particle
hydrodynamics on gpus,” in Computer Graphics International, 2007,
pp. 63–70.

[9] H. Yan, Z. Wang, J. He, X. Chen, C. Wang, and Q. Peng, “Real-
time fluid simulation with adaptive sph,” Computer Animation and
Virtual Worlds, vol. 20, no. 2-3, pp. 417–426, 2009.

[10] F. Sin, A. W. Bargteil, and J. K. Hodgins, “A point-based method
for animating incompressible flow,” in Proceedings of the 2009 ACM
SIGGRAPH/Eurographics Symposium on Computer Animation, ser.
SCA ’09. ACM, 2009, pp. 247–255.

[11] Y. Zhu and R. Bridson, “Animating sand as a fluid,” ACM Trans.
Graph., vol. 24, pp. 965–972, July 2005.

[12] F. Losasso, J. Talton, N. Kwatra, and R. Fedkiw, “Two-way cou-
pled sph and particle level set fluid simulation,” IEEE Transactions
on Visualization and Computer Graphics, vol. 14, pp. 797–804, July
2008.

[13] J. Yu and G. Turk, “Reconstructing surfaces of particle-based
fluids using anisotropic kernels,” in Proceedings of the 2010 ACM
SIGGRAPH/Eurographics Symposium on Computer Animation, ser.
SCA ’10. Eurographics Association, 2010, pp. 217–225.

[14] S. Osher and J. A. Sethian, “Fronts propagating with curvature-
dependent speed: algorithms based on hamilton-jacobi formula-
tions,” J. Comput. Phys., vol. 79, no. 1, pp. 12–49, 1988.

[15] D. Enright, R. Fedkiw, J. Ferziger, and I. Mitchell, “A hybrid
particle level set method for improved interface capturing,” J.
Comput. Phys, vol. 183, pp. 83–116, 2002.

[16] Z. Wang, J. Yang, and F. Stern, “An improved particle correction
procedure for the particle level set method,” J. Comput. Phys., vol.
228, pp. 5819–5837, September 2009.

[17] V. Mihalef, D. Metaxas, and M. Sussman, “Textured liquids based
on the marker level set,” Computer Graphics Forum, vol. 26, no. 3,
pp. 457–466, 2007.

[18] A. W. Bargteil, T. G. Goktekin, J. F. O’brien, and J. A. Strain, “A
semi-lagrangian contouring method for fluid simulation,” ACM
Trans. Graph., vol. 25, pp. 19–38, January 2006.

[19] N. Heo and H.-S. Ko, “Detail-preserving fully-eulerian interface
tracking framework,” in ACM SIGGRAPH Asia 2010 papers, ser.
SIGGRAPH ASIA ’10. ACM, 2010, pp. 176:1–176:8.

[20] N. Foster and R. Fedkiw, “Practical animation of liquids,” in
Proceedings of the 28th annual conference on Computer graphics and
interactive techniques, ser. SIGGRAPH ’01. ACM, 2001, pp. 23–30.

[21] E. Guendelman, A. Selle, F. Losasso, and R. Fedkiw, “Coupling
water and smoke to thin deformable and rigid shells,” ACM Trans.
Graph., vol. 24, pp. 973–981, July 2005.

[22] J. Kim, D. Cha, B. Chang, B. Koo, and I. Ihm, “Practical animation
of turbulent splashing water,” in Proceedings of the 2006 ACM
SIGGRAPH/Eurographics symposium on Computer animation, ser.
SCA ’06. Eurographics Association, 2006, pp. 335–344.

[23] N. Chentanez, B. E. Feldman, F. Labelle, J. F. O’Brien, and
J. R. Shewchuk, “Liquid simulation on lattice-based tetrahedral
meshes,” in Proceedings of the 2007 ACM SIGGRAPH/Eurographics
symposium on Computer animation, ser. SCA ’07. Eurographics
Association, 2007, pp. 219–228.

[24] C. W. Hirt and B. D. Nichols, “Volume of fluid vof method for
the dynamics of free boundaries,” Journal of Computational Physics,
vol. 39, pp. 201–225, January 1981.

[25] M. Kass, A. Witkin, and D. Terzopoulos, “Snakes: Active contour
models,” International journal of computer vision, vol. 1, no. 4, pp.
321–331, 1988.

[26] J. Glimm, J. W. Grove, X. L. Li, K.-m. Shyue, Y. Zeng, and
Q. Zhang, “Three-dimensional front tracking,” SIAM J. Sci. Com-
put., vol. 19, no. 3, pp. 703–727, 1998.

[27] G. Tryggvason, B. Bunner, A. Esmaeeli, D. Juric, N. Al-Rawahi,
W. Tauber, J. Han, S. Nas, and Y. Jan, “A front-tracking method
for the computations of multiphase flow,” Journal of Computational
Physics, vol. 169, no. 2, pp. 708–759, 2001.

[28] T. Brochu and R. Bridson, “Robust topological operations for
dynamic explicit surfaces,” SIAM Journal on Scientific Computing,
vol. 31, no. 4, pp. 2472–2493, 2009.

[29] C. Wojtan, N. Thürey, M. Gross, and G. Turk, “Deforming meshes
that split and merge,” in ACM SIGGRAPH 2009 papers, ser.
SIGGRAPH ’09. ACM, 2009, pp. 76:1–76:10.

[30] M. Becker and M. Teschner, “Weakly compressible sph for
free surface flows,” in Proceedings of the 2007 ACM SIG-
GRAPH/Eurographics symposium on Computer animation, ser. SCA
’07. Eurographics Association, 2007, pp. 209–217.

[31] B. Solenthaler and R. Pajarola, “Predictive-corrective incompress-
ible sph,” ACM Trans. Graph., vol. 28, pp. 40:1–40:6, July 2009.

[32] S. Koshizuka, H. Tamako, and Y. Oka, “A particle method for
incompressible viscous flow with fluid fragmentation,” Comput.
Fluid Dynamics J., vol. 29(4), 1996.

[33] S. Premžoe, T. Tasdizen, J. Bigler, A. Lefohn, and R. T. Whitaker,
“Particle-based simulation of fluids,” Computer Graphics Forum,
vol. 22, no. 3, pp. 401–410, 2003.

[34] M. Pauly, R. Keiser, B. Adams, P. Dutré, M. Gross, and L. J. Guibas,
“Meshless animation of fracturing solids,” ACM Trans. Graph.,
vol. 24, pp. 957–964, July 2005.

[35] R. Keiser, B. Adams, D. Gasser, P. Bazzi, P. Dutre, and M. Gross,
“A unified lagrangian approach to solid-fluid animation,” Pro-
ceedings Eurographics/IEEE VGTC Symposium Point-Based Graphics,
vol. 0, pp. 125–148, 2005.

[36] D. Gerszewski, H. Bhattacharya, and A. W. Bargteil, “A point-
based method for animating elastoplastic solids,” in Proceedings
of the 2009 ACM SIGGRAPH/Eurographics Symposium on Computer
Animation, ser. SCA ’09. ACM, 2009, pp. 133–138.

[37] J. F. Blinn, “A generalization of algebraic surface drawing,” ACM
Trans. Graph., vol. 1, pp. 235–256, July 1982.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. X, NO. X, JANUARY 2012 13

(a) With Adaptive Sampling (b) Without Adaptive Sampling (c) Overall Simulation Time

Fig. 16. Timing results for the dam breaking setup of Figure 19 at resolution 1503. At highest load, the sheet

preservation algorithm can surpass the core FLIP solver, which takes the most time on average. Adaptive sampling

significantly reduces the cost of density and position correction computation, as can be seen in (a) and (b), and

accelerates the overall algorithm by a factor of up to two (c).

Fig. 17. Enright deformation test. Our particle-based method can tolerate the thin features of the Enright test by

particles that inserted at the critical points (shown in pink) and collapsed in densely regions.

Fig. 18. Comparison between adaptive re-sampling and regular sampling. The left side shows our adaptively

sampled simulation, while right side shows a regularly sampled simulation. Notice that both exhibit similar motion.

[38] B. Adams, M. Pauly, R. Keiser, and L. J. Guibas, “Adaptively
sampled particle fluids,” ACM Trans. Graph., vol. 26, July 2007.

[39] W. Hong, D. H. House, and J. Keyser, “Adaptive particles for
incompressible fluid simulation,” Vis. Comput., vol. 24, pp. 535–
543, July 2008.

[40] ——, “An adaptive sampling approach to incompressible particle-
based fluid.” in TPCG, W. Tang and J. P. Collomosse, Eds. Eu-
rographics Association, 2009, pp. 69–76.

[41] K. Raveendran, C. Wojtan, and G. Turk, “Hybrid smoothed
particle hydrodynamics,” in Proceedings of the 2011 ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation, ser. SCA
’11. New York, NY, USA: ACM, 2011, pp. 33–42.

[42] F. H. Harlow, “The particle-in-cell computing method for fluid
dynamics,” Methods Comput. Phys, no. 3, pp. 319–343, 1964.

[43] C. Batty and R. Bridson, “Accurate viscous free surfaces for

buckling, coiling, and rotating liquids,” in Proceedings of the 2008
ACM/Eurographics Symposium on Computer Animation, July 2008,
pp. 219–228.

[44] J. Brackbill and H. Ruppel, “Flip: A method for adaptively zoned,
particle-in-cell calculations of fluid flows in two dimensions,”
Journal of Computational Physics, vol. 65, no. 2, pp. 314 – 343, 1986.

[45] A. Robinson-Mosher, R. E. English, and R. Fedkiw, “Accurate
tangential velocities for solid fluid coupling,” in Proceedings of
the 2009 ACM SIGGRAPH/Eurographics Symposium on Computer
Animation, ser. SCA ’09. ACM, 2009, pp. 227–236.

[46] N. Rasmussen, D. Enright, D. Nguyen, S. Marino, N. Sumner,
W. Geiger, S. Hoon, and R. Fedkiw, “Directable photorealistic
liquids,” in Proceedings of the 2004 ACM SIGGRAPH/Eurographics
symposium on Computer animation, ser. SCA ’04. Eurographics
Association, 2004, pp. 193–202.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. X, NO. X, JANUARY 2012 14

1 2

3 4

Fig. 19. Dam breaking setup. Four images from a dam breaking simulation employing our particle-based thin sheet

preservation algorithm.

[47] F. Gibou, R. P. Fedkiw, L.-T. Cheng, and M. Kang, “A second-
order-accurate symmetric discretization of the poisson equation
on irregular domains,” J. Comput. Phys., vol. 176, pp. 205–227,
February 2002.

[48] C. Batty, F. Bertails, and R. Bridson, “A fast variational framework
for accurate solid-fluid coupling,” ACM Trans. Graph., vol. 26, July
2007.

[49] R. Ando and R. Tsuruno, “A particle-based method for pre-
serving fluid sheets,” in Proceedings of the 2011 ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation, ser. SCA
’11. ACM, 2011, pp. 7–16.

[50] D. P. Enright, “Use of the particle level set method for en-
hanced resolution of free surface flows,” Ph.D. dissertation, 2002,
aAI3067855.

