
Vector Fluid: A Vector Graphics Depiction of Surface Flow

Ryoichi Ando∗

Graduate School of Design

Kyushu University

Reiji Tsuruno†

Faculty of Design

Kyushu University.

Figure 1: Vector graphics depicted fluid: These figures were generated interactively using our prototype and they can be described in terms
of spline curves. Zoom in with your PDF viewer to see how our vector fluid preserves very high levels of detail.

Abstract

We present a simple technique for creating fluid silhouettes de-
scribed with vector graphics, which we call ”Vector Fluid.” In our
system, a solid region in the fluid is represented as a closed contour
and advected by fluid flow to form a curly and clear shape similar
to marbling or sumi-nagashi (See Figure 1). The fundamental prin-
ciple behind our method is that contours of solid regions should
not collide. This means that if the initial shape of the region is a
concave polygon, that shape should maintain its topology so that
it can be rendered as a regular concave polygon, no matter how ir-
regularly the contour is distorted by advection. In contrast to other
techniques, our approach explicitly neglects topology changes to
track surfaces in a trade off of computational cost and complexity.
We also introduce an adaptive contour sampling technique to reduce
this extra cost. We explore specific examples in 2D for art oriented
usage and show applications and robustness of our method to ex-
hibit organic fluid components. We also demonstrate how to port
our entire algorithm onto a GPU to boost interactive performance
for complex scenes.

CR Categories: I.3.5 [Computational Geometry and Object Mod-
eling]: Curve, surface, solid, and object representations— [I.3.3]:
Picture/Image Generation—Line and curve generation

Keywords: Non-photorealistic rendering,vector graphics,surface
flow,marbling

∗

†

1 Introduction

For more than a decade in the graphics community, the depiction
of fluids has been mainly focused on capturing realistic behavior.
Thanks to the considerable contribution of seminal studies, we now
have extensive knowledge about how to achieve the photorealistic
rendering of fluids. On the other hand, although some approaches to
the artistic rendering of fluid have been proposed, it seems that Non-
Photorealistic Rendering (NPR) of fluids has not been researched
intensively and techniques for rendering fluids using vector graph-
ics still remain untouched. In this paper, we specifically explore art
oriented depictions of 2D surface flow similar to marbling or sumi-
nagashi, using vector graphics. In order to achieve vector graphics
rendering, we have to track solid regions in the fluid. However, tra-
ditional methods which address complex topological changes are
often too dissipative, blobby or complex to capture clear and de-
tailed silhouettes.

Instead, we adopt the principle that no parts of contours should
collide by advection so that the topology of a region should not
change, because the streaklines of fluid do not collide. Such solid
regions may merge or split when they get very close, which does
involve topological changes; despite exhausive efforts, such topo-
logical changes are still daunting to track precisely. In the context
of surface detail preservation, a state-of-the-art topological changes
algorithm also acts as a filter, which smoothes out surface detail. In
our approach, we explicitly neglect topological changes to simplify
the problem. We consider this to be a computational trade off. Ig-
noring topological events enables us to obtain detailed features and
simplifies the algorithm, at the expense of considerable extra com-
putational cost. Fortunately, we found that the cost in two dimen-
sions was not so extreme as to monopolize the CPU. In fact, every
figure shown in this paper was created interactively. In our model,
a solid region is represented with explicit closed form contours so
that rendering or export of the region into vector graphical form is
done simply by plotting sequential contour vertices as a concave
polygon.

The main drawback of our approach is that the computational cost
rises quickly as the shape becomes complex due to the sharp propa-
gation of vertices to track. Additionally, discretized contour rep-
resentation causes collisions around adjacent contours. In order

to deal with these disadvantages, we introduce a simple technique
to change the discretization space of contour vertices adaptively,
which we call “Adaptive Refinement.” We further introduce a
method to implement the entire algorithm on a GPU to achieve suf-
ficient performance to make real-time interaction with the simula-
tion feasible.

The key components of our algorithm are listed as follows: (a) Ig-
norance of topological changes; since streaklines of fluid never col-
lide, contours of the fluid flow never collide either. This leads to the
idea that the topology of the solid region should not change no mat-
ter how irregularly shapes are distorted by advection. (b) Adaptive
Refinement: if we let vertices propagate without bounds, the com-
putational cost rises sharply as complexity increases. We suppress
this propagation by controlling sampling spaces in the local envi-
ronment. (c) Shapes are depicted with vector graphics; the closed
form contours of solid regions are treated as regular concave poly-
gons. By just plotting a sequence of vertices, the whole shape can
be directly translated into vector graphics format.

2 Previous work

Our work is related to studies in two categories: artistic expres-
sion of fluids and surface tracking methods. The most relevant
work is that of [Acar and Boulanger 2006] which was intended to
reproduce the visual effects of marbling flow using a physically de-
rived flow model. They observed surface flow based on mesoscale
dynamics and produced effects of fluctuations at different scales.
In order to advect clear silhouettes under Eulerian grids, they em-
ployed b-spline interpolation and extended the range of concentra-
tion temporarily in the semi-Lagrangian advection phase. Eulerian
grid approximation is limited in terms of the degree of resolution,
if we wish to obtain a reasonable simulation. If we simulate with
high resolution, it requires a great deal of per-pixel computation and
memory.

Eden [Eden et al. 2007] proposed a method for rendering liquids
in a cartoon-style manner. Exploiting a physically created fluid
surface, they rendered it by emphasizing properties of the liquid’s
shape and motion, inspired by the abstraction and simplification of
cartoon animations. This method resembles our own in that both
have clear silhouettes and very few colors. However, they used
an implicit contouring method as an underlying liquid animation;
hence thin line detail is inherently smoothed out before it is styl-
ized.

Selle et al. [Selle et al. 2004] introduced a technique for gener-
ating cartoon-style animations of smoke. Based on a physically-
based simulated output, they traced marker particles and rendered
them using depth buffer differences to generate clear smoke ani-
mations. McGuire et al. [McGuire and Fein 2006] extended this
technique and developed a system for rendering real-time anima-
tions of smoke, in addition to introducing a novel self-shadowing
algorithm. However, these methods cannot track precise thin lines
with the level of detail seen in marbling-like fluid flow since each
particle (primitive) is visibly large.

Witting [Witting 1999] presented a system that uses computational
fluid dynamics to produce two-dimensional animated films. They
employed a compressive fluid dynamics and restricted it to two di-
mensions to develop user controllable fluid experiences. The work
presented in this paper shares his motivation in that both offer artists
fluid environments for design purposes; we focus particularly on a
vector graphics format.

Our work is also comparable with surface tracking techniques used
in physically derived liquid animations. This topic has a long his-
torical background; here, we briefly review those works since they

mainly focus on a well-designed topological changes algorithm,
which is orthogonal to our approach. Roughly, a free surface is
tracked using three approaches: Eulerian grids, Lagrangian parti-
cles and explicit surfaces.

Among Eulerian approaches, Hirt [Hirt and Nichols 1981] pro-
posed a volume-of-fluid method that constructs an approximation
of the interface from cells which contain portions of the interface.
Osher [Osher and Sethian 1988] proposed a level set method which
has become dominant in industrial applications. In the level set
method, a signed distance function φ from the interface is advected
and the surface is implicitly located where φ = 0. The advantage
of these two Eulerian based approaches is that they do not require a
special post-process to handle topological changes. However, they
do suffer from numerical diffusion or loss of mass conservation
[Enright et al. 2005].

Among Lagrangian methods, Enright [Enright et al. 2002] ex-
tended the level set method with Lagrangian particles and in-
creased accuracy. Harlow [Harlow and Welch 1965] advected par-
ticles in marker-and-cell grids to identify deforming surfaces.
Müller, Harada [Müller et al. 2003; Harada et al. 2007] incorpo-
rated Smoothed Particle Hydrodynamics (SPH) and applied it to
visual simulations. These methods introduced blobby or splitting
artifacts for thin details.

Meanwhile, a number of explicit front tracking meth-
ods have been proposed, both for computational dynamics
[Glimm et al. 1998; Brochu and Bridson 2009; Wojtan et al. 2009;
Müller 2009; Tryggvason et al. 2001] and for image processing
[Kass et al. 1988; McInerney and Terzopoulos 2000]. In front
tracking methods, a surface interface is constructed with explicit
surface elements and advected by the underlying motion. The front
tracking method offers a precise representation of the interface free
from grid resolution or numerical diffusion; however, it suffers
from self-intersections or complexity. They detected topological
changes by uniform grid traps or by searching close edges. It
turns out to be challenging to do this without losing surface detail.
Except for the fact that they tackle complex topological changes,
their method is comparable to ours. Since we eliminate topological
changes, we instead suffer from a huge computational cost.

3 Method

Before we discuss the concrete algorithm, let us first briefly out-
line the overall workflow in Figure 2. To depict vector graph-
ics, we first place closed contours in a fluid flow and then ad-
vect them along the fluid flow. Rendering of the solid region is
performed in just the same way as rendering a regular concave
polygon. Since particle-based advection preserves accurate mass
conservation, [Enright et al. 2002; Puckett et al. 1997] we paint re-
gions with plain colors.

Figure 2: Workflow of our method: We first place closed contours
of a painted region in the fluid field, then advect or stretch them
along the fluid flow. The rendering of the region is done just as a
concave polygon is rendered.

3.1 Contour Advection

In order to advect contours, we must generate the underlying fluid
motion. For simplicity, we used the finite differential grid and semi-
Lagrangian advection method to generate the fluid velocity field.
Once we have fluid flow, we can place closed contours on the sur-
face of water and advect them. In our system, we represent con-
tours as a sequence of discrete points connected to each other and
advect them in the Lagrangian manner. For a numerical method,
it is inevitable that advection causes collisions; to prevent signifi-
cant collisions, we employed a fourth order accuracy Runge-Kutta
scheme. We denote this scheme as

v
t+∆t = φ(∆t, vt, ut). (1)

where v
t , u

t and φ denote the position of the contour vertex, the
velocity of the fluid field and the Runge-Kutta scheme at time t,
respectively. After all vertices have been advected (t ← t + ∆t),
we measure the distances between connected vertices and if this
distance exceeds a threshold d, we insert a new vertex vnew midway
between the relevant pair of vertices at the previous time step and
advect it such that

vnew = φ
(

∆t,
1

2
(vt−∆t

0 + v
t−∆t

1), ut−∆t

)

(2)

where v0 and v1 denote the positions of each vertex in the pair. This
time rewinding method helps position subdivided vertices more ac-
curately than would linear subdivision with rapid advection. The
effect may be slight; however, it also helps to reduce faceted edges
or collisions, which allows us take larger time steps. On the con-
trary, if the distance is less than d/2 we collapse the vertex. This
process is repeated until all connected vertices lie between d and
d/2 apart.

3.2 Rendering and Export

To export the region as a vector graphic, we write the shape as a reg-
ular concave polygon. Starting from an arbitrary vertex, we move to
the next connected vertex and write its position in sequence. Ren-
dering of the concave polygon is performed efficiently by the sten-
cil method [Woo et al. 1997]; for every pair of connected contour
points (p, q), we draw a triangle polygon (0, p, q) onto a frame-
buffer while inverting the existing values between 0 and 1. Finally,
the solid region is filled with value 1.

3.3 Adaptive Refinement

With the aforementioned steps we may be able to create a vector
fluid silhouette, however, implementation of this method can easily
result in excessive computation due to rapidly increasing propaga-
tion of vertices over time. In this section, we introduce an “Adaptive
Refinement” method to suppress this propagation.

From our observations, we found that we could omit vertices where
the contour is not curved strongly, whereas where the contour is
tightly curved or the fluid is eddying we needed to insert more
points. Hence, we tuned the distance threshold d; we controlled
it by taking its product with the local curvature ccurvature

i and the
turbulence cturbulence

i , thus:

di = dmaxc
curvature
i cturbulence

i + ε (3)

where dmax denotes the maximum space between vertices. The
value ε is a limit constant to avoid 0. To determine the local curva-
ture, we employed a normalized second derivative:

ccurvature
i = exp(−|κ|), (4)

Figure 3: Adaptive Refinement: Small diamond marks represent
vertices to track. Notice that the space of vertices is sensitive to the
curvature. In order to avoid collisions, more vertices are inserted
where contours are highly curved.

where κ denotes the finite differential curvature value. For local
turbulence, we considered local vorticity:

cturbulence
i = exp(−|∇ × u(vi)|), (5)

where vi is the position of i th vertex on a contour, u(vi) denotes
the velocity of the fluid at position vi. Using such an adaptive d,
we can unnoticeably remove a large fraction of the vertices while
increasing the quality where contours have high curvature or turbu-
lence. Notice that both ccurvature

i and cturbulence
i range between 0

and 1. This strategy works well for most cases, although when d
is sufficiently large it often fails to capture small perturbations of
the fluid flow. To compensate for this drawback, we additionally
diffused di along the contour. After we calculated each di value at
vi we iteratively assigned to di a value as follows:

di ←

w
∑

n=−w

G(α, n)di+n, (6)

where w and G(α, x) denote the window radius and a gaussian
function, respectively. Typically, w = kd−1

max. By diffusing di,
rapid agitation around vertices triggers its neighbors to have a small
di value; therefore, such rapid motion is well captured by the neigh-
boring vertices. We illustrate the effect of Adaptive Refinement in
Figure 3.

The Adaptive Refinement technique prevents large numbers of un-
necessary vertices from being inserted; however it still produces in-
tersections around thin or adjacent regions. Fortunately, we found
that slight collisions of contours do not contribute to significant
visual artifacts, however, for the purpose of generating high DPI
images such as big posters, one may want to remove collisions as

much as possible. In such cases, we add a proximity term cproximity
i

in equation (3) as

cproximity
i

= 1− exp(−dproximity
i

), (7)

where dproximity
i

denotes the distance function from the nearest op-
posite contour. This magnifies contour subdivision; instead, gener-
ated collisions are minimized. For such a thin line, one may just
split it during the simulation, however, thin lines are important vi-
sual keys for detailed silhouettes so we let them grow as it proceeds.

3.4 GPU Acceleration

Although our algorithm runs at an interactive rate on a CPU, it
is limited to only around 40,000 vertices (10FPS). In this section
we introduce a GPU accelerated algorithm to boost realtime per-
formance. Similarly to particle markers, contours can be tracked

with a collection of particles except that in our model the number
of particles varies and explicit connection information is dynami-
cally reconstructed. The straightforward approach may be to store
each initial vertex into individual kernels and watch them propa-
gate, although computational cost varies among kernels since con-
tour growth is uneven, which results in a slowdown. To disperse the
computation evenly we introduce a method for task diffusion.

Our GPU acceleration strategy consists of the following three steps:
(i) contour advection (ii) contour subdivision (iii) task diffusion. In
our system, each vertex has information about its position and a ref-
erence to the next connected vertex. We refer to this kind of vertex
as a “task.” On a GPU, a contour is decomposed into a collection
of tasks, each one referring to the next task; tasks are then stored
in separate kernels. Device memory storage is pre-allocated and
mapped onto kernels.

In the advection phase, positions of tasks stored in each kernel are
advected as in section 3.1 in parallel. In the contour subdivision
phase, each kernel probes every stored task for its distance from
the referenced task, and then subdivides or collapses it if necessary,
as also described in section 3.1,3.3. Inserted vertices are stored
into the kernel of the originating task. In this phase, numbers of
tasks stored in kernels become uneven. In the task diffusion phase,
we choose random pairs of kernels and compare their numbers of
stored tasks. In the case that the opposite kernel holds a smaller
number of tasks, we move tasks into the opposite kernel. For
consistency, we choose a pair (kerneli, kernel(i+r)mod n), where
kerneli denotes the i th kernel, r is a shared random integer and
n is the number of kernels. We avoid conflict by letting i be even
and r be odd. This task diffusion phase averages out the numbers
of tasks among kernels, which disperses advection and subdivision
cost evenly.

To evaluate equation (7) vertex indices are sorted into uniform grids
as described in [Grand 2007] and we constrain searches within
neighboring grids. Solid regions are rendered using the stencil
method by randomly writing task polygons (0, p, preference) into
a vertex array where p denotes the position of a task and preference

the position of the referenced task. Empty slots are filled with null
polygons. In our case the whole procedure including a description
of the underlying fluid was ported using CUDA.

4 Results

Comparison with competing methods is shown in Figure 4. The
particle level-set result was generated with an existing library
[Mokberi and Faloutsos]. Eulerian advection was generated with
a semi-Lagrangian advection scheme. Clear edges were enforced
using the concentration transformation function introduced by Acar
[Acar and Boulanger 2006]. Front tracking methods were omitted
since they behave similarly to ours if topological change is skipped.
All of those results were computed for shared fluid motion. Our
computation took 7 seconds while others took more than ten min-
utes for a 1600x1600 grid. The thin line property was well main-
tained with our method whereas the particle level-set method broke
thin lines and Eulerian advection filtered them out even at high res-
olution. The performance with a single threaded CPU and GPU
is illustrated in Figure 5(a). Our implementation on a GPU runs
several times faster than that on a CPU for a complex scene. Note
that the performance of the GPU depends on the size of the pre-
allocated GPU memory because the entire memory space is sent
into the rendering pipeline. The maximum size of this example was
around 100,000 vertices.

On the other hand, Figure 5(a,b) also reveals two critical limitations
of our method. Firstly, a tractable number of time steps is limited
to around a few thousand (but this number depends heavily on the

environment), which can be easily reached. Secondly, contours are
interactively tracked up to around 100,000 vertices. Despite these
limitations, we found that our method is quite practical and effective
for creating organic fluid components.

Figure 4: Competing methods for a shared fluid field; the particle
level-set method breaks thin lines and Eulerian advection filters out
details whereas our method retains detailed features.

Figure 5: Performance of our method with Adaptive Refinement
(a): At 10,0000 vertices the CPU recorded 4 FPS while the GPU
recorded 17 FPS. (b) Vertex propagation in time; there is a limit on
the number of time steps that can be interactively simulated due to
the sharp increase in the number of vertices.

5 Applications

We built an interactive prototype both on an Intel Core i7 2.8GHz
and a GeForce 285GTX running Linux. The underlying fluid was
computed with a 64×64 grid resolution. With our prototype, users
are allowed to drop pigments on the surface of water and disturb
it simply by mouse dragging. In this section we introduce some
interesting applications and explore the potential of our method.

5.1 Marbling and Sumi-nagashi

Figure 6 shows an example of a complex vector fluid generated by
our method. When creating this silhouette, artists experienced re-
sponsive interactions just as in real marbling. As can be seen from
the figure, our method is powerful enough to design stylish curly
shapes similar to marbling or sumi-nagashi. The particular charac-
teristic of our vector fluid method is that such closed contours are
directly translatable into vector based programs. Figure 7 shows
an example of a shape imported to Adobe illustrator and Adobe

FLASH. Since our vector fluid is wholly described in vector graph-
ics, artists are allowed to print it with limitless high resolution.

Figure 6: Complex marbling-like silhouette: This vector fluid was
created with our GPU prototype and during the simulation, render-
ing and interaction were responsive.

Figure 7: Shape imported into Adobe illustrator and Adobe
FLASH: Our vector fluid can be directly exported into a vector
based program without losing detail.

5.2 Shape Designing Tool

With a highly viscous fluid, the velocity diffuses through the en-
tire space rapidly so that the effect of advection is only noticeable
just after the user agitates the fluid. This allows artists a long time
for each interaction and offers undo&redo functionality. One may
exploit this effect for instant stylish curly designing. For example,
Figure 8 was created by an artist within 10 seconds.

5.3 Target Driven Design

The underlying fluid can be controlled by external forces.
For example we can combine with a Target-Driven fluid field
[Fattal and Lischinski 2004] to guide regions into a specified tar-
get shape. In our implementation a solid region was rasterized and
blurred at each time step. We skipped the smoke gathering pro-
cedure, since our vector field was not dissipative. Figure 9 shows
an example of target-driven smoke animation effects. To generate

Figure 8: Stylish logo created with viscous fluid; this figure was
interactively created by an artist in only 10 seconds. The right side
table shows snapshots of the design process.

this figure, we first placed small ovals randomly on the canvas and
gathered them according to the guiding flow.

Figure 9: Effects of Target-Driven Smoke Animation: When com-
bined, our vector fluid can be used to design user specified stencil
art with curly fluid textures.

5.4 FLASH Animation

Our vector fluid can be efficiently animated on a web browser using
Adobe FLASH (but not interactively). To export it into a FLASH
movie, each frame was computed and exported as a vector graphic.
Finally, those sequential frames were imported into Adobe FLASH.
The animation is rendered with the built-in FLASH engine so that it
can be rotated or zoomed dynamically. As can be seen from Figure
10 our vector fluid offers a new medium for web page design.

6 Limitation

Our method does not handle changes in topology; therefore our
method cannot be used for liquid animations. Despite our “Adap-
tive Refinement” technique and GPU acceleration, our method has
inherent limitations with respect to the number of vertices and time
steps to be interactively simulated as seen in Figure 5. The under-
lying fluid flow should be somewhat viscous to keep the contours
tractable since small vortices increase subdivision quickly. Each
time step should also be small otherwise advection produces many
collisions. The dreadful drawback of excessive computational cost
mainly arises from extremely thin lines of the solid region. For such

lines we are planning to employ an alternative simplified approxi-
mation, such as explicit lines with width.

Figure 10: Vector fluid animated in a web browser using the built-
in FLASH renderer. To animate in FLASH, a sequence of vector
graphics frames was precomputed and stitched.

7 Discussion

We believe that the realtime interaction and the aesthetics of ren-
dered silhouettes are the most impressive part of our method. Tradi-
tional approaches to fluid dynamics in computer graphics based on
Eulerian grids or Lagrangian particles suffer from numerical diffu-
sion or blobby artifacts when they are applied to generate clear sil-
houettes of surface flow. It may be possible to achieve our goal by
employing state-of-the-art front tracking methods, but our method
is greatly simplified and specifically tuned to produce reasonable
results. The GPU acceleration and the fast rendering technique pre-
sented in this paper are only feasible within two dimensions. The
overall idea may be conceptually extendable to three dimensions;
however, it is not practically feasible.

8 Conclusion

In this paper, we have presented the simple idea of vector fluid and
given a detailed explanation of the proposed method. The under-
lying principle of our method is that the topology of any concave
polygon should not change by advection because streaklines of fluid
field do not collide. Based on this consideration, we developed
a simple front-tracking algorithm and introduced an adaptive re-
finement method to reduce subdivision cost. We further ported the
entire algorithm onto a GPU and succeeded in achieving realtime
performance. We also showed that our method can be used for
marbling design, shape design, flash animation and target-driven
design. We believe that our method opens up a new opportunity
for vector artists. However, although our prototype is interactive,
the running time of our method increases sharply as the contour
stretches. In future work, we would like to modify our method to
increase its ability to deal with more complex scenes.

References

ACAR, R., AND BOULANGER, P. 2006. Digital marbling: A multi-
scale fluid model. IEEE Transactions on Visualization and Com-
puter Graphics 12, 4, 600–614.

BROCHU, T., AND BRIDSON, R. 2009. Robust topological oper-
ations for dynamic explicit surfaces. SIAM Journal on Scientific
Computing 31, 4, 2472–2493.

EDEN, A. M., BARGTEIL, A. W., GOKTEKIN, T. G., EISINGER,
S. B., AND O’BRIEN, J. F. 2007. A method for cartoon-

style rendering of liquid animations. In GI ’07: Proceedings
of Graphics Interface 2007, ACM, New York, NY, USA, 51–55.

ENRIGHT, D., FEDKIW, R., FERZIGER, J., AND MITCHELL, I.
2002. A hybrid particle level set method for improved interface
capturing. J. Comput. Phys 183, 83–116.

ENRIGHT, D., LOSASSO, F., AND FEDKIW, R. 2005. A fast
and accurate semi-lagrangian particle level set method. Comput.
Struct. 83, 6-7, 479–490.

FATTAL, R., AND LISCHINSKI, D. 2004. Target-driven smoke
animation. In SIGGRAPH ’04: ACM SIGGRAPH 2004 Papers,
ACM, New York, NY, USA, 441–448.

GLIMM, J., GROVE, J. W., LI, X. L., SHYUE, K.-M., ZENG, Y.,
AND ZHANG, Q. 1998. Three-dimensional front tracking. SIAM
J. Sci. Comput. 19, 3, 703–727.

GRAND, S. L. 2007. GPU Gems 3, Broad-Phase Collision Detec-
tion with CUDA. Addison Wesley.

HARADA, T., KOSHIZUKA, S., AND KAWAGUCHI, Y. 2007.
Smoothed particle hydrodynamics on gpus. In Proc. of Com-
puter Graphics International, 63–70.

HARLOW, F. H., AND WELCH, E. J. 1965. Numerical calculation
of time-dependent viscous incompressible flow of fluid with free
surface. Physics of Fluids 8, 12, 2182–2189.

HIRT, C. W., AND NICHOLS, B. D. 1981. Volume of fluid /vof/
method for the dynamics of free boundaries. Journal of Compu-
tational Physics 39 (January), 201–225.

KASS, M., WITKIN, A., AND TERZOPOULOS, D. 1988. Snakes:
Active contour models. International journal of computer vision
1, 4, 321–331.

MCGUIRE, M., AND FEIN, A. 2006. Real-time rendering of car-
toon smoke and clouds. In NPAR ’06: Proceedings of the 4th
international symposium on Non-photorealistic animation and
rendering, ACM, New York, NY, USA, 21–26.

MCINERNEY, T., AND TERZOPOULOS, D. 2000. T-snakes: Topol-
ogy adaptive snakes. Medical Image Analysis 4, 2, 73–91.

MOKBERI, E., AND FALOUTSOS, P. A particle level set library.

MÜLLER, M., CHARYPAR, D., AND GROSS, M. 2003. Particle-
based fluid simulation for interactive applications. In SCA ’03:
Proceedings of the 2003 ACM SIGGRAPH/Eurographics sympo-
sium on Computer animation, Eurographics Association, Aire-
la-Ville, Switzerland, Switzerland, 154–159.

MÜLLER, M. 2009. Fast and robust tracking of fluid sur-
faces. In SCA ’09: Proceedings of the 2009 ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation,
ACM, New York, NY, USA, 237–245.

OSHER, S., AND SETHIAN, J. A. 1988. Fronts propagating
with curvature-dependent speed: algorithms based on hamilton-
jacobi formulations. J. Comput. Phys. 79, 1, 12–49.

PUCKETT, E. G., ALMGREN, A. S., BELL, J. B., MARCUS,
D. L., AND RIDER, W. J. 1997. A high-order projection method
for tracking fluid interfaces in variable density incompressible
flows. J. Comput. Phys. 130, 2, 269–282.

SELLE, A., MOHR, A., AND CHENNEY, S. 2004. Cartoon render-
ing of smoke animations. In NPAR ’04: Proceedings of the 3rd
international symposium on Non-photorealistic animation and
rendering, ACM, New York, NY, USA, 57–60.

TRYGGVASON, G., BUNNER, B., ESMAEELI, A., JURIC, D., AL-
RAWAHI, N., TAUBER, W., HAN, J., NAS, S., AND JAN, Y.
2001. A front-tracking method for the computations of multi-
phase flow. Journal of Computational Physics 169, 2, 708–759.

WITTING, P. 1999. Computational fluid dynamics in a traditional
animation environment. In SIGGRAPH ’99: Proceedings of the
26th annual conference on Computer graphics and interactive
techniques, ACM Press/Addison-Wesley Publishing Co., New
York, NY, USA, 129–136.

WOJTAN, C., THÜREY, N., GROSS, M., AND TURK, G. 2009.
Deforming meshes that split and merge. In SIGGRAPH ’09:
ACM SIGGRAPH 2009 papers, ACM, New York, NY, USA, 1–
10.

WOO, M., NEIDER, J., AND DAVIS, T. 1997. OpenGL program-
ming guide (2nd ed.): the official guide to learning OpenGL
version 1.1. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA.

	Introduction
	Previous work
	Method
	Contour Advection
	Rendering and Export
	Adaptive Refinement
	GPU Acceleration

	Results
	Applications
	Marbling and Sumi-nagashi
	Shape Designing Tool
	Target Driven Design
	FLASH Animation

	Limitation
	Discussion
	Conclusion

